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Abstract

We develop a model of monetary exchange in over-the-counter markets to study the
effects of monetary policy on asset prices and standard measures of financial liquidity, such
as bid-ask spreads, trade volume, and the incentives of dealers to supply immediacy, both by
participating in the market-making activity and by holding asset inventories on their own
account. The theory predicts that asset prices carry a speculative premium that reflects the
asset’s marketability and depends on monetary policy as well as the market microstructure
where it is traded. These liquidity considerations imply a positive correlation between the
real yield on stocks and the nominal yield on Treasury bonds—an empirical observation
long regarded anomalous. The theory also exhibits rational expectations equilibria with
recurring belief driven events that resemble liquidity crises, i.e., times of sharp persistent
declines in asset prices, trade volume, and dealer participation in market-making activity,
accompanied by large increases in spreads and abnormally long trading delays.
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1 Introduction

We develop a model of monetary exchange in financial over-the-counter (OTC) markets and

use it to study some elementary questions in financial and monetary economics. Specifically, we

consider a setting in which a financial asset that yields a dividend flow of consumption goods

(e.g., an equity or a real bond) is traded by investors who have time-varying heterogeneous

valuations for the dividend. In order to achieve the gains from trade that arise from their

heterogeneous private valuations, investors participate in a bilateral market with random search

that is intermediated by specialized dealers who have access to a competitive interdealer market.

In the bilateral market, which has all the stylized features of a typical OTC market structure,

investors and dealers seek to trade the financial asset using fiat money as a medium of exchange.

Periodically, dealers and investors are also able to rebalance their portfolios in a frictionless

(Walrasian) market.

We use the theory to study the role that the quantity of money plays in shaping asset

prices in particular and the performance of OTC markets more generally. Since money serves

as means of payment in financial transactions, the quantity of real balances affects the equilib-

rium allocation of the asset. Anticipated inflation reduces real balances and distorts the asset

allocation by causing too many assets to remain in the hands of investors with relatively low

valuations. We find that in a monetary equilibrium, the asset price is larger than the expected

present discounted value that any agent assigns to the dividend stream. The difference be-

tween the transaction price and the highest individual valuation is a “speculative premium”

that investors are willing to pay because they anticipate capital gains from reselling the as-

set to investors with higher valuations in the future. We show that the speculative premium

and the asset price depend on the market structure where the asset is traded, e.g., both the

premium and the asset price are decreasing in the effective bargaining power of dealers in the

OTC market, as captured by the product of their trading probability and bargaining power in

bilateral transactions with investors. Monetary policy also affects speculative motives and the

resulting speculative premium. Anticipated inflation reduces the real money balances used to

finance asset trading, which limits the ability of high-valuation traders to purchase the asset

from low-valuation traders. As a result, the speculative premium and the real asset price are

decreasing in the rate of (expected) inflation. This simple mechanism rationalizes the posi-

tive correlation between the real yield on stocks and the nominal yield on Treasury bonds—an
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empirical observation long regarded anomalous and that, for lack of an alternative theory, has

been attributed to money illusion since the 1970s. We also use the model to study the effects of

monetary policy on standard measures of financial liquidity of OTC markets, such as the size of

bid-ask spreads, the volume of trade, and the incentives of dealers to supply immediacy, both

by choosing to participate in the market-making activity, as well as by holding asset inventories

on their own account. We show that a version of the model in which dealer participation in

market-making activities is endogenous exhibits rational expectations equilibria with recurring

belief-driven events that resemble liquidity crises in which liquidity “dries up” and speculative

premia “burst.” Specifically, there are times when dealers withdraw from market making, which

makes the assets that they intermediate difficult to trade, causing their prices and trade volume

to fall abruptly at the same time that there is a sharp increase in the spreads and trading delays.

2 The model

Time is represented by a sequence of periods indexed by t = 0, 1, .... Each time-period is

divided into two subperiods where different activities take place. There is a continuum of

infinitely lived agents called investors, each identified with a point in the set I = [0, 1]. There

is also a continuum of infinitely lived agents called dealers, each identified with a point in the

set D = [0, v], where v ∈ R+. All agents discount payoffs across periods with the same factor,

β ∈ (0, 1). In every period there is a continuum of productive units (or trees) with measure

As ∈ R++. Every productive tree yields an exogenous dividend yt ∈ R+ of a perishable

consumption good at the end of the first subperiod of period t. (Each tree yields the same

dividend as every other tree, so yt is also the aggregate dividend.) At the beginning of every

period t, every tree is subject to an independent idiosyncratic shock that renders it permanently

unproductive with probability 1−π ∈ [0, 1) (unproductive trees physically disappear). If a tree

remains productive, its dividend in period t + 1 is yt+1 = γt+1yt where γt+1 is a nonnegative

random variable with cumulative distribution function Γ, i.e., Pr (γt+1 ≤ γ) = Γ (γ), and mean

γ̄ ∈ (0, (βπ)−1). The time-t dividend becomes known to all agents at the beginning of period

t, and at that time each tree that failed is replaced by a new tree that yields dividend yt in the

initial period and follows the same stochastic process as other productive trees thereafter (the

dividend of the initial set of trees, y0 ∈ R++, is given at t = 0). In the second subperiod of

every period, every agent has access to a linear production technology that transforms a unit

of the agent’s effort into a unit of another kind of perishable homogeneous consumption good.
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Each productive tree has outstanding one durable and perfectly divisible equity share that

represents the bearer’s ownership of the tree and confers him the right to collect the dividends.

At the beginning of every period t ≥ 1, each investor receives an endowment of (1− π)As equity

shares corresponding to the new trees created in that period. When a tree fails, its equity share

disappears with the tree. There is a second financial instrument, money, which is intrinsically

useless (it is not an argument of any utility or production function, and unlike equity, ownership

of money does not constitute a right to collect any resources). The stock of money at time t is

denoted Amt . The initial stock of money, Am0 ∈ R++, is given, and Amt+1 = µAmt , with µ ∈ R++.

A monetary authority injects or withdraws money via lump-sum transfers or taxes to investors

in the second subperiod of every period. At the beginning of period t = 0, each investor is

endowed with a portfolio of equity shares and money. All financial instruments are perfectly

recognizable, cannot be forged, and can be traded among agents in every subperiod.

In the second subperiod of every period, all agents can trade the consumption good produced

in that subperiod, equity shares, and money, in a spot Walrasian market. In the first subperiod

of every period, trading is organized as follows: Investors and dealers can trade equity shares

and money in a random bilateral OTC market, while dealers can also trade equity shares and

money with other dealers in a spot Walrasian interdealer market. We use α ∈ [0, 1] to denote the

probability that an individual investor is able to contact another investor in the OTC market.

Once the two investors have contacted each other, the pair negotiates a trade involving equity

shares and money. We assume that, with probability η ∈ [0, 1], the terms of the trade are

chosen by the investor who values the equity dividend the most, and by the other investor with

complementary probability.1 After the transaction has been completed, the investors part ways.

Similarly, we use δ ∈ [0,min (v, 1− α)] to denote the probability that an individual investor is

able to make contact with a dealer in the OTC market. The probability that a dealer contacts

an investor is δ/v ≡ κ ∈ [0, 1]. Once a dealer and an investor have contacted each other, the

pair negotiates the quantity of equity shares that the dealer will buy from, or sell to the investor

in exchange for money. We assume that the terms of the trade between an investor and a dealer

in the OTC market are chosen by the investor with probability θ ∈ [0, 1], and by the dealer with

probability 1 − θ. After the transaction has been completed, the dealer and the investor part

ways.2 The timing assumption is that the round of OTC trade between investors and dealers

1In the event that both investors value the dividend the same, each gets selected to make a take-it-or-leave it
offer with equal probability.

2See Zhang (2012) for an OTC model with long-term relationships between investors and dealers.
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takes place in the first subperiod of a typical period t, and ends before trees yield dividends.

Hence equity is traded cum dividend in the OTC market (and in the interdealer market) of the

first subperiod, but ex dividend in the Walrasian market of the second subperiod. We assume

that agents cannot make binding commitments, that there is no enforcement, and that histories

of actions are private in a way that precludes any borrowing and lending, so any trade must

be quid pro quo. This assumption and the structure of preferences described below create the

need for a medium of exchange.3

An individual dealer’s preferences are given by

Ed0
∞∑
t=0

βt(ctd − htd)

where ctd is his consumption of the homogeneous good that is produced, traded and consumed

in the second subperiod of period t, and htd is the utility cost from exerting htd units of effort

to produce this good. The expectation operator Ed0 is with respect to the probability measure

induced by the dividend process and the random trading process in the OTC market. Dealers

get no utility from the dividend good.4 An individual investor’s preferences are given by

E0

∞∑
t=0

βt (εtiyti + cti − hti)

where yti is the quantity of the dividend good that investor i consumes at the end of the first

subperiod of period t, cti is his consumption of the homogeneous good that is produced, traded

and consumed in the second subperiod of period t, and hti is the utility cost from exerting hti

units of effort to produce this good. The variable εti denotes the realization of a preference shock

that is distributed independently over time and across agents, with a differentiable cumulative

distribution function G on the support [εL, εH ] ⊆ [0,∞], and ε̄ =
∫
εdG (ε). Investor i learns

his realization εti at the beginning of period t, before the OTC trading round. The expectation

operator E0 is with respect to the probability measure induced by the dividend process, the

investor’s preference shock and the random trading process in the OTC market.

3Notice that under these conditions there cannot exist a futures market for fruit, so an agent who wishes
to consume the fruit dividend must be holding the equity share at the time the dividend is paid. A similar
assumption is typically made in search models of financial OTC trade, e.g., see Duffie et al. (2005) and Lagos
and Rocheteau (2009).

4This assumption implies that dealers have no direct consumption motive for holding the equity share. It is
easy to relax, but it is the standard benchmark in the search-based OTC literature, e.g., see Duffie et al. (2005)
and Lagos and Rocheteau (2009), Lagos, Rocheteau and Weill (2011), and Weill (2007).
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3 Efficiency

Consider a social planner who wishes to maximize the sum of all agents’ expected discounted

utilities, subject to the same meeting frictions that agents face in the decentralized formulation.

Specifically, in the first subperiod of every period, the planner can only reallocate assets within

the pairs of the measure α of investors who have contacted each other directly, and among all

dealers and the measure δ of investors chosen at random from the rest of the population. Let

Bt ⊆ I denote the subset of investors who get a bilateral trading opportunity with another

investor in the OTC market of period t. For any i ∈ Bt, let b (i) ∈ Bt denote investor i’s partner

in the bilateral meeting. Notice that
∫
Bt di = α is the measure of investors who have an OTC

meeting with another investor, and
∫
Bt I{i≤b(i)}di = α/2 is the total number of direct bilateral

transactions between investors in the OTC market. We restrict attention to symmetric alloca-

tions (identical agents receive equal treatment). Let ctD and htD denote a dealer’s consumption

and production of the homogeneous consumption good in the second subperiod of period t. Let

ctI (ε) and htI (ε) denote consumption and production of the homogeneous consumption good

in the second subperiod of period t by an investor with idiosyncratic preference type ε. Let

ãtD denote the beginning-of-period-t (before depreciation) equity holding of a dealer, and let

a′tD denote the equity holding of a dealer at the end of the first subperiod of period t (after

OTC trade). Let ãtI denote the beginning-of-period-t (before depreciation and endowment)

asset holding of an investor. Finally, let atij(εi, εj) denote the post-trade equity holding of an

investor i with preference type εi who has a direct bilateral trade opportunity with an investor j

with preference type εj , and let a′tI denote a measure on F ([εL, εH ]), the Borel σ-field defined on

[εL, εH ]. The measure a′tI is interpreted as the distribution of post-trade asset holdings among

investors with different preference types who contacted a dealer in the first subperiod of period

t. With this notation, the planner’s problem consists of choosing a nonnegative allocation,{
ãtD, a

′
tD, ctD, htD, ãtI , a

′
tI ,

[(
atib(i)(εi, εb(i))

)
i∈Bt

, ctI (εi) , htI (εi)

]
εi,εb(i)∈[εL,εH ]

}∞
t=0

, (1)

to maximize

E0

∞∑
t=0

βt

[
δ

∫
[εL,εH ]

εyta
′
tI (dε) +

∫ εH

εL

[(1− α− δ) εytatI + ctI (ε)− htI (ε)] dG (ε) + v(ctD − htD)

+

∫
Bt

∫ ∫
I{i≤b(i)}

[
εiatib(i)(εi, εb(i)) + εb(i)atb(i)i(εb(i), εi)

]
ytdG (εi) dG(εb(i))di

]
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(the expectation operator E0 is with respect to the probability measure induced by the dividend

process) subject to

atib(i)
(
εi, εb(i)

)
+ atb(i)i

(
εb(i), εi

)
≤ 2atI (2)

vãtD + ãtI ≤ As (3)

va′tD + δ

∫
[εL,εH ]

a′tI (dε) ≤ vatD + δatI (4)∫ εH

εL

ctI (ε) dG (ε) + vctD ≤
∫ εH

εL

htI (ε) dG (ε) + vhtD (5)

atD = πãtD (6)

atI = πãtI + (1− π)As. (7)

Proposition 1 The efficient allocation satisfies the following three conditions for every t: (a)

ãtD = (As − ãtI)/v = As/v, (b) atib(i)
(
εi, εb(i)

)
= I{εb(i)<εi}2atI + I{εb(i)=εi}a

o for all i ∈ Bt,
with ao ∈ [0, 2atI ], and (c) a′ti (E) = I{εH∈E} [π/δ + (1− π)]As, where I{εH∈E} is an indicator

function that takes the value 1 if εH ∈ E, and 0 otherwise, for any E ∈ F ([εL, εH ]).

According to Proposition 1, the efficient allocation is characterized by the following three

properties: (a) only dealers carry equity between periods, (b) in bilateral direct trades between

investors, all the equity shares are allocated to the highest valuation investor, and (c) among

those investors who have a trading opportunity with a dealer, only those with the highest

preference type hold equity shares at the end of the first subperiod.

4 Equilibrium

We begin with the formulation of the individual dealer’s optimization problem during a typical

period. Let V D
t (at) denote the maximum expected discounted payoff of a dealer who enters

the OTC round of period t with portfolio at ≡ (amt , a
s
t ). Let WD

t (at) denote the maximum

expected discounted payoff of a dealer who is holding portfolio at at the beginning of the second

subperiod of period t. Let φmt be the real price of money, and φst be the real ex dividend price

of equity in the second subperiod of period t (both expressed in terms of the second-subperiod
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consumption good). Then,

WD
t (at) = max

ct,ht,ãt+1

[
ct − ht + βEtV D

t+1 (at+1)
]

(8)

s.t. ct + φtãt+1 ≤ ht + φtat,

ct, ht ∈ R+, ãt+1 ∈ R2
+

at+1 =
(
ãmt+1, πã

s
t+1

)
,

where Et is the conditional expectation over the next-period realization of the dividend, φt ≡
(φmt , φ

s
t ), ãt+1 ≡

(
ãmt+1, ã

s
t+1

)
, and φtat denotes the dot product of φt and at.

Let ŴD
t (at) denote the maximum expected discounted payoff of a dealer with portfolio at

in the first subperiod of period t, conditional on not having contacted an investor in the OTC

market. Since the unmatched dealer can still access the interdealer market,

ŴD
t (at) = max

âmt ,â
s
t

WD
t (âmt , â

s
t ) (9)

s.t. âmt + ptâ
s
t ≤ amt + pta

s
t ,

âmt , â
s
t ∈ R+,

where pt is the dollar price of equity in the interdealer market of period t.

Next consider the situation of a dealer who enters the OTC round of trade of period t with

portfolio atd, and contacts an investor with portfolio ati and preference type ε in the OTC

market. With probability θ the terms of trade are determined by a take-it-or-leave-it offer by

the investor, and the resulting post-trade portfolios of the investor and the dealer are denoted

[ami∗ (ati,atd, ε;ψt), a
s
i∗(ati,atd, ε;ψt)]

[amd (ati,atd, ε;ψt), a
s
d(ati,atd, ε;ψt)],

respectively, where ψt ≡ (1/pt,φt). With probability 1 − θ the terms of trade are determined

by a take-it-or-leave-it offer by the dealer, and the resulting post-trade portfolios of the investor

and the dealer are

[ami (ati,atd, ε;ψt), a
s
i (ati,atd, ε;ψt)]

[amd∗(ati,atd, ε;ψt), a
s
d∗(ati,atd, ε;ψt)],
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respectively.5 We can now write the value function of a dealer who enters the OTC round of

trade of period t with portfolio atd,

V D
t (atd) = κθ

∫
ŴD
t [amd (ati,atd, ε;ψt), a

s
d (ati,adt, ε;ψt)] dHt (ati, ε)

+ κ (1− θ)
∫
ŴD
t [amd∗(ati,atd, ε;ψt), a

s
d∗(ati,atd, ε;ψt)] dHt (ati, ε)

+ (1− κ) ŴD
t (atd) , (10)

where Ht is the joint cumulative distribution function over the preference types and portfolios

held by the random investor whom the dealer may contact in the OTC market of period t.

We now analyze the investor’s problem in a typical period. Let V I
t (ati, ε) denote the

maximum expected discounted payoff of an investor who has preference type ε and is holding

portfolio ati ≡ (amti , a
s
ti) at the beginning of the OTC round of period t. Let W I

t (at) denote the

maximum expected discounted payoff of an investor who is holding portfolio at at the beginning

of the second subperiod of period t (after the trees have borne dividends). Then,

W I
t (at) = max

ct,ht,ãt+1

[
ct − ht + βEt

∫
V I
t+1

(
at+1, ε

′) dG(ε′)

]
(11)

s.t. ct + φtãt+1 ≤ ht + φtat + Tt

ct, ht ∈ R+, ãt+1 ∈ R2
+

at+1 = (ãmt+1, πã
s
t+1 + (1− π)As),

where Tt is the real value of the time-t lump-sum monetary transfer (tax, if negative). Since ε is

i.i.d. over time, W I
t (at) is independent of ε and the portfolio that each investor chooses to carry

into period t+ 1 is independent of ε. Consequently, in what follows we can write dHt (ati, ε) =

dF It (ati) dG (ε), where F It is the joint cumulative distribution function of investors’ money and

equity holdings at the beginning of the OTC round of period-t.

Consider a bilateral meeting in the OTC trading round of period t, between an investor i

with portfolio ati and preference type εi, and an investor j with portfolio atj and preference

type εj . Let η̃ (εi, εj) ≡ ηI{εj<εi} + (1− η) I{εi<εj} + (1/2) I{εi=εj} denote the probability that

the investor with preference type εi has the power to make a take-it-or-leave-it offer in a bilateral

trade with an investor with preference type εj . When investor i makes the take-it-or-leave-it

5In what follows, we will sometimes use amti∗ to denote ami∗(ati,atd, ε;ψt), a
s
td to denote asd(ati,ati, ε;ψt), etc.
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offer to investor j, the resulting post-trade portfolios of investors i and j are denoted

[ami∗ (ati,atj , εi, εj ;ψt) , a
s
i∗ (ati,atj , εi, εj ;ψt)]

[amj (atj ,ati, εj , εi;ψt) , a
s
j (atj ,ati, εj , εi;ψt)],

respectively. With probability 1 − η̃ (εi, εj) the terms of trade are determined by a take-it-or-

leave-it offer by investor j, and the resulting post-trade portfolios of investors i and j are

[ami (ati,atj , εi, εj ;ψt) , a
s
i (ati,atj , εi, εj ;ψt)]

[amj∗ (atj ,ati, εj , εi;ψt) , a
s
j∗ (atj ,ati, εj , εi;ψt)],

respectively.6 We can now write the value function of an investor who enters the OTC round

of period t with portfolio ait and preference type εi,

V I
t (ati, εi) = δ

∫
θ {εiytasi∗ (ati,atd, εi;ψt) +

W I
t [ami∗ (ati,atd, εi;ψt) , a

s
i∗ (ati,atd, εi;ψt)]

}
dFDt (atd)

+ δ

∫
(1− θ) {εiytasi (ati,atd, εi;ψt) +

W I
t [ami (ati,atd, εi;ψt) , a

s
i (ati,atd, εi;ψt)]

}
dFDt (atd)

+ α

∫
η̃ (εi, εj) {εiytasi∗ (ati,atj , εi, εj ;ψt) +

W I
t [ami∗ (ati,atj , εi, εj ;ψt) , a

s
i∗ (ati,atj , εi, εj ;ψt)]

}
dHt (atj , εj)

+ α

∫
[1− η̃ (εi, εj)] {εiytasi (ati,atj , εi, εj ;ψt) +

W I
t [ami (ati,atj , εi, εj ;ψt) , a

s
i (ati,atj , εi, εj ;ψt)]

}
dHt (atj , εj)

+ (1− α− δ)
[
εiyta

s
ti +W I

t (ati)
]
, (12)

where FDt is the cumulative distribution function over portfolios held by the random dealer

whom the dealer may contact in the OTC market of period t. Next, we characterize the

outcomes of trades in the OTC and the interdealer markets.

The maximization problem (9) represents the portfolio problem of a dealer who did not

contact an investor in the OTC market of period t. The solution is summarized as follows:

6In what follows, we will sometimes use amti∗ to denote ami∗ (ati,atj , εi, εj ;ψt), astj to denote
asj (atj ,ati, εj , εi;ψt), etc.
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Lemma 1 A dealer who enters period t with portfolio at and does not contact an investor,

enters the second subperiod with portfolio (âmtd, â
s
td) ≡ (âmd (at;ψt), â

s
d(at;ψt)), given by

âmtd =


= 0 if ptφ

m
t < φst

∈ [0, amt + pta
s
t ] if ptφ

m
t = φst

= amt + pta
s
t if φst < ptφ

m
t

and âstd =


ast + 1

pt
amt if ptφ

m
t < φst

ast + 1
pt

(amt − âmtd) if ptφ
m
t = φst

0 if φst < ptφ
m
t ,

and his maximum expected discounted payoff is

ŴD
t (at) = φ̄t (amt + pta

s
t ) +WD

t (0) (13)

where φ̄t ≡ max (φmt , φ
s
t/pt), and

WD
t (0) = max

ãt+1∈R2
+

[
−φtãt+1 + βEtV D

t+1 (at+1)
]

(14)

s.t. at+1 = (ãmt+1, πã
s
t+1).

If ptφ
m
t < φst , then a dealer who holds any cash in the interdealer market can use a dollar

to buy 1/pt equity shares, and the net return from this trade equals φst/pt (the real value of the

equities in the Walrasian market of the second subperiod of period t) minus φm (the real cost

of the trading strategy), which is strictly positive. Hence, it is optimal for the dealer to sell all

his cash for equity if ptφ
m
t < φst . Conversely, if φst < ptφ

m
t , it is optimal for the dealer to sell

any equity holdings he may have and carry only cash into the second subperiod of period t.

Consider the bargaining problem between an investor with preference type ε and portfolio

(amti , a
s
ti) who contacts a dealer with portfolio (amtd, a

s
td) in the OTC market of period t. With

probability θ the investor has the power to make a take-it-or-leave-it offer to the dealer. The

investor chooses his offer of post-trade portfolios for himself, (amti∗ , a
s
ti∗), and for the dealer,

(amtd, a
s
td), by solving

max
am
ti∗ ,a

s
ti∗ ,a

m
td,a

s
td

[
εyta

s
ti∗ +W I

t (amti∗ , a
s
ti∗)
]

s.t. amti∗ + amtd + pt(a
s
ti∗ + astd) ≤ amti + amtd + pt(a

s
ti + astd)

ŴD
t (amtd, a

s
td) ≥ ŴD

t (amtd, a
s
td)

amti∗ , a
s
ti∗ , a

m
td, a

s
td ∈ R+.

The first constraint requires that the combined value of the post-trade portfolios held by the

investor and the dealer cannot exceed the combined value of their pre-trade portfolios. The

second constraint is the dealer’s individual rationality constraint.
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With complementary probability 1−θ, the dealer has the power to make a take-it-or-leave-it

offer to the investor. The dealer chooses his offer of post-trade portfolios for himself, (amtd∗ , a
s
td∗),

and for the dealer, (amti , a
s
ti), by solving

max
amti ,a

s
ti,a

m
td∗ ,a

s
td∗
ŴD
t (amtd∗ , a

s
td∗)

s.t. amti + amtd∗ + pt(a
s
ti + astd∗) ≤ amti + amtd + pt(a

s
ti + astd)

εyta
s
ti +W I

t (amti , a
s
ti) ≥ εytasti +W I

t (amti , a
s
ti)

amti , a
s
ti, a

m
td∗ , a

s
td∗ ∈ R+.

The first constraint requires that the combined value of the pre-trade portfolios is enough to

finance the post-trade portfolios. The second constraint is the investor’s individual rationality

constraint. The following result summarizes the outcome of the bargaining game between an

investor and a dealer.

Lemma 2 Consider the bargaining problem between an investor i with portfolio (amti , a
s
ti) and

preference type ε, and a dealer d with portfolio (amtd, a
s
td) in the OTC market of period t.

(i) With probability θ the investor chooses the terms of trade, and in this case the investor

exits the meeting with post-trade portfolio (amti∗ , a
s
ti∗) given by

amti∗


= 0 if ε∗t < ε
∈ [0, amti + pta

s
ti] if ε = ε∗t

= amti + pta
s
ti if ε < ε∗t

and asti∗ =


asti + 1

pt
amti if ε∗t < ε

asti + 1
pt

(amti − amti∗) if ε = ε∗t
0 if ε < ε∗t

where

ε∗t ≡
ptφ

m
t − φst
yt

. (15)

The dealer’s portfolio (amtd, a
s
td) that results from trading with the investor is given by

amtd ∈ [0, amtd + pta
s
td] and astd = astd +

1

pt
(amtd − amtd) .

(ii) With probability 1− θ the dealer chooses the terms of trade, and in this case the investor

exits the meeting with post-trade portfolio (amti , a
s
ti) given by

amti


= 0 if ε∗t < ε
∈ [0, amti + pta

s
ti] if ε = ε∗t

= amti + pot (ε) asti if ε < ε∗t

and asti =


asti + 1

pot (ε)
amti if ε∗t < ε

asti + 1
pt

(amti − amti ) if ε = ε∗t
0 if ε < ε∗t

12



where

pot (ε) ≡
(
εyt + φst
ε∗t yt + φst

)
pt =

εyt + φst
φmt

. (16)

The dealer’s portfolio (amtd∗ , a
s
td∗) that results from trading with the investor is given by

amtd∗


∈ [0, amtd + pta

s
td + [pot (ε)− pt] amti

pot (ε)
] if ε∗t < ε

∈ [0, amtd + pta
s
td] if ε = ε∗t

∈ [0, amtd + pta
s
td + [pt − pot (ε)] asti] if ε < ε∗t

and

astd∗ =


astd + 1

pt
[amtd + [pot (ε)− pt] amti

pot (ε)
− amtd∗ ] if ε∗t < ε

astd + 1
pt

(amtd − amtd∗) if ε = ε∗t
astd + 1

pt
[amtd + [pt − pot (ε)] asti − amtd∗ ] if ε < ε∗t .

To interpret the results in Lemma 2, observe that (15) defines the preference type of the

“marginal investor.” That is, investors with preference type ε < ε∗t want to sell equity for cash,

investors with preference type ε > ε∗t want to buy equity with cash, and the marginal investors

with preference type ε = ε∗t are indifferent between buying or selling equity, as they have no

gain from trading in the OTC market.7 Consider an investor who has drawn preference type

ε and meets a dealer in period t. If ptφ
m
t < εyt + φst , or equivalently, if ε∗t < ε, then the

real value of a dollar to the investor is φmt (the amount of second-subperiod goods he can buy

in the following centralized market), which is smaller than (εyt + φst ) /pt, namely the value to

the investor of the (cum-dividend) equity position that can be purchased with a dollar in the

interdealer market. Naturally, in this case the bargaining outcome is that the investor sells all

his cash and uses it to purchase equity, regardless of whether the dealer or the investor has the

bargaining power. Formally, in Lemma 2, amti∗ = amti = 0 if ε∗t < ε. Analogously, if ε < ε∗t , then

the investor sells all his equity for cash, both when he makes the offer, and when the dealer

makes the offer (i.e., asti∗ = asti = 0 if ε < ε∗t in the lemma). If ε = ε∗t , the investor is indifferent

between holding equity or cash; there are no gains from trade between him and the dealer.

The quantity of equity shares the investor gets for his cash holdings when ε∗t < ε, and the

amount of cash that he gets for his equity shares when ε < ε∗t , however, do depend on whether

the investor or the dealer has the bargaining power. If the investor has the bargaining power, he

can effectively trade money for equity at the interdealer market price, pt, i.e., he pays pt dollars

per share when he buys equity, and gets pt dollars per share when he sells equity. Formally,

7Another way to interpret (15) is that given ε∗t , ptφ
m
t = ε∗t yt + φst is the cum dividend real value of equity to

the marginal investor in period t.
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in Lemma 2, asti∗ = asti + 1
pt
amti if ε∗t < ε, and amti∗ = amti + pta

s
ti if ε < ε∗t . If the dealer has

the bargaining power, he offers less favorable terms of trade to the investor. Effectively, the

bargaining outcome implies that the dealer lets the investor trade at pot (ε) dollars per share,

rather than pt dollars per share. Notice that ∂pot (ε) /∂ε > 0, so investors with higher preference

types face a higher dollar price per share. Also, note that pot (ε) > pt if and only if ε∗t < ε.

Thus the dealer charges pot (ε) > pt dollars per share to an investor who wishes to buy equity

(i.e., an investor with ε∗t < ε), and pays pot (ε) < pt dollars per share to an investor who wishes

to sell equity (an investor with ε < ε∗t ). In other words, in a meeting where the dealer has the

bargaining power, pot (ε) is the nominal bid price for investors who want to sell equity, or the

nominal ask price for investors who want to buy equity. In terms of the lemma, this is why

asti = asti + 1
pot (ε)

amti if ε∗t < ε, and amti = amti + pot (ε) asti if ε < ε∗t .

The indeterminacy in the dealer’s portfolio follows from the fact that after having traded

with the investor, the dealer can immediately retrade in the interdealer market, so all the dealer

cares about is the value of his own combined post-trade portfolio. In fact, as the following

corollary shows, the post-trade value of the dealer and the investor portfolios are uniquely

pinned down.

Corollary 1 Consider the bargaining problem between an investor i with portfolio (amti , a
s
ti) and

preference type ε, and a dealer d with portfolio (amtd, a
s
td) in the OTC market of period t.

(i) With probability θ the investor chooses the terms of trade, and in this case the dollar value

of the investor’s and the dealer’s post-trade portfolios are, respectively,

amti∗ + pta
s
ti∗ = amti + pta

s
ti

amtd + pta
s
td = amtd + pta

s
td.

(ii) With probability 1 − θ the dealer chooses the terms of trade, and in this case the dollar

value of the investor’s and the dealer’s post-trade portfolios are, respectively,

amti + pta
s
ti =

{
amti + pta

s
ti − [pot (ε)− pt] amti

pot (ε)
if ε∗t ≤ ε

amti + pta
s
ti − [pt − pot (ε)] asti if ε < ε∗t

amtd∗ + pta
s
td∗ =

{
amtd + pta

s
td + [pot (ε)− pt] amti

pot (ε)
if ε∗t ≤ ε

amtd + pta
s
td + [pt − pot (ε)] asti if ε < ε∗t .

14



Corollary 1 shows that the dealer extracts a transaction fee from the investor only when he

has the bargaining power. For example, when the dealer encounters an investor with ε > ε∗t

who wishes to purchase x shares, the dealer extracts pot (ε) − pt =
(ε−ε∗t )yt
ε∗t yt+φ

s
t
pt dollars per share

purchased by the investor, for a total fee of
(ε−ε∗t )yt
ε∗t yt+φ

s
t
ptx dollars. In Lemma 2 and Corollary 1,

x = asti − asti = 1
pot (ε)

amti =
(
ε∗t yt+φ

s
t

εyt+φst

)
1
pt
amti , so the total fee equals

(ε−ε∗t )yt
εyt+φst

amti dollars. Similarly,

when the dealer encounters an investor with ε < ε∗t who wishes to sell asti shares, the dealer

extracts pt − pot (ε) =
(ε∗t−ε)yt
ε∗t yt+φ

s
t
pt dollars per share sold by the investor.

Consider a bilateral meeting in the OTC trading round of period t, between an investor i

with portfolio ati and preference type εi, and an investor j with portfolio atj and preference

type εj . With probability η̃ (εi, εj), investor i has the power to make a take-it-or-leave-it offer

to investor j, and in that event investor i chooses an offer of post-trade portfolios for himself,

(amti∗ , a
s
ti∗), and for investor j, (amtj , a

s
tj), by solving

max
am
ti∗ ,a

s
ti∗ ,a

m
tj ,a

s
tj

[
εiyta

s
ti∗ +W I

t (amti∗ , a
s
ti∗)
]

s.t. amti∗ + amtj ≤ amti + amtj

asti∗ + astj ≤ asti + astj

εjyta
s
tj +W I

t (amtj , a
s
tj) ≥ εjytastj +W I

t (amtj , a
s
tj)

amti∗ , a
s
ti∗ , a

m
tj , a

s
tj ∈ R+.

The first two constraints imply that in a bilateral meeting the two investors can (only) reallocate

money and assets between themselves. The third constraint ensures that it is individually

rational for investor j to accept i’s offer. The following result summarizes the outcome of the

bargaining game between two investors.

Lemma 3 Consider the bargaining problem between an investor i with portfolio (amti , a
s
ti) and

preference type εi, and an investor j with portfolio (amtj , a
s
tj) and preference type εj in the OTC

market of period t. Suppose that investor i has the power to choose the terms of trade, then his
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post-trade portfolio is ati∗ = (amti∗ , a
s
ti∗) with

asti∗


= asti + min

[
amti

pot (εj)
, astj

]
if εj < εi

∈
[
asti −min

[
amtj

pot (εj)
, asti

]
, asti + min

[
amti

pot (εj)
, astj

]]
if εj = εi

= asti −min
[

amtj
pot (εj)

, asti

]
if εi < εj

amti∗ =


amti −min

[
pot (εj)a

s
tj , a

m
ti

]
if εj < εi

amti + pot (εj) (asti − asti∗) if εj = εi

amti + min
[
pot (εj)a

s
ti, a

m
tj

]
if εi < εj ,

and investor j’s post-trade portfolio is atj = (amtj , a
s
tj), with astj = astj + asti − asti∗ and amtj =

amtj + amti − amti∗.

In Lemma 3, if εj < εi, then investor i wishes to purchase all of investor j’s equity. Since

he has all the bargaining power, investor i sets the terms of trade at pot (εj) dollars per equity

share, i.e., the dollar price of equity that makes investor j just indifferent between selling equity

for dollars or not. The quantity of equity that investor i is able to purchase will depend on his

money holdings, amti . If amti ≥ pot (εj)a
s
tj , then he buys all of investor j’s equity holdings, astj , in

exchange for pot (εj)a
s
tj dollars. If amti < pot (εj)a

s
tj , then i gives investor j all his money holdings,

amti , in exchange for
amti

pot (εj)
equity shares. Conversely, if εi < εj , then investor i wishes to sell all

of his equity to investor j. Similarly, the quantity of equity that investor i will sell to investor

j depends on j’s money holdings, amtj . If amtj ≥ pot (εj)a
s
ti, then j buys all of investor i’s equity

holdings, asti, in exchange for pot (εj)a
s
ti dollars. If amtj < pot (εj)a

s
ti, then j gives investor i all his

money holdings, amtj , in exchange for
amtj

pot (εj)
equity shares.

The bargaining outcomes can be substituted in the value functions (10) and (12) to obtain

the following result.

Lemma 4 Let AmIt and AsIt denote the quantity of money and shares held by all investors

at the beginning of the OTC round of period t, respectively, i.e., AmIt =
∫
amti dF

I
t (ati) and

AsIt =
∫
astidF

I
t (ati).

(i) The value function of a dealer who enters the OTC round of period t with portfolio atd =

(amtd, a
s
td) is given by

V D
t (amtd, a

s
td) = φ̄t (amtd + pta

s
td) + V D

t (0) (17)
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where

V D
t (0) ≡ κ (1− θ) φ̄t

[
AmIt

∫ εH

ε∗t

(ε− ε∗t ) yt
εyt + φst

dG (ε) + ptA
s
It

∫ ε∗t

εL

(ε∗t − ε) yt
ε∗t yt + φst

dG (ε)

]
+WD

t (0) .

(ii) The value function of an investor who enters the OTC round of period t with portfolio

ati = (amti , a
s
ti) and preference type εi is given by

V I
t (amti , a

s
ti, εi) = φmt a

m
ti + (εiyt + φst ) a

s
ti +W I

t (0)

+ δθI{ε∗t≤εi}
(εi − ε∗t ) yt
ε∗t yt + φst

φmt a
m
ti + δθI{εi<ε∗t } (ε∗t − εi) ytasti

+ α

∫
I{εj≤εi}η

(εi − εj) yt
εjyt + φst

min [φmt a
m
ti , (εjyt + φst )A

s
It] dG (εj)

+ α

∫
I{εi<εj} (1− η)

(εj − εi) yt
εjyt + φst

min [φmt A
m
It, (εjyt + φst ) a

s
ti] dG (εj) (18)

where I{ε∗t≤εi} is an indicator function that takes the value 1 if ε∗t ≤ εi, and 0 otherwise.

Notice that the first term on the right side of V D
t (0) is the expected fee earned by a dealer

in the OTC market of period t (the term inside the square bracket on the right side of V D
t (0)

is the expected fee earned by a dealer when he makes an offer to an investor whose preference

type, ε, is a random draw from G). To interpret (18), notice that the first line represents the

value to the investor of holding the portfolio of money and equity until the end of the period.

The remaining four terms represent the expected net gains from trading. For example, the

factor that multiplies the indicator function I{ε∗t≤εi}, i.e., δθ
(εi−ε∗t )yt
ε∗t yt+φ

s
t
φmt a

m
ti , is the expected net

gain to the investor from exchanging money for shares in a trade with a dealer in the OTC

market, and the factor that multiplies the indicator function I{εi<ε∗t }, i.e., δθ (ε∗t − εi) ytasti, is

the expected net gain to the investor from exchanging shares for money in a trade with a dealer

in the OTC market.8 The last two terms on the right side of (18) represent the expected net

8Conditional on having drawn εi ≥ ε∗t , the investor contacts a dealer with probability δ and has the bargaining
power with probability θ. In this case the investor sells amti dollars for 1

pt
amti shares, and his net payoff from this

transaction is

(εiyt + φst )
1

pt
amti − φmt amti = (εiyt + φst )

φmt
ε∗t yt + φst

amti − φmt amti =
(εi − ε∗t ) yt
ε∗t yt + φst

φmt a
m
ti .

Conditional on having drawn εi < ε∗t , the investor contacts a dealer with probability δ and has the bargaining
power with probability θ. In this case the investor sells asti shares for pt dollars each. The investor’s net payoff
from this transaction is φmt pta

s
ti − (εiyt + φst ) a

s
ti = (ε∗t − εi) ytasti.

17



gains from trading with another investor in the OTC market.9

The following result uses Lemma 4 to characterize the solutions to the portfolio problems

that a typical dealer and a typical investor solve in the second subperiod of period t.

Lemma 5 Let
(
ãmt+1d, ã

s
t+1d

)
and

(
ãmt+1i, ã

s
t+1i

)
denote the portfolios chosen by a dealer and

an investor, respectively, in the second subperiod of period t. The first-order necessary and

sufficient conditions for optimization that these portfolios must satisfy are

φmt ≥ βEt max
(
φmt+1, φ

s
t+1/pt+1

)
(19)

φst ≥ βπEt max
(
pt+1φ

m
t+1, φ

s
t+1

)
(20)

and

φmt ≥ βEt
[

1 + δθ

∫ εH

ε∗t+1

(εi − ε∗t+1)yt+1

ε∗t+1yt+1 + φst+1

dG (εi)

+ αη

∫ εH[
φmt+1a

m
t+1i

As
It+1

−φst+1

]
1

yt+1

∫ εH

εj

(εi − εj) yt+1

εjyt+1 + φst+1

dG (εi) dG (εj)

]
φmt+1 (21)

φst ≥ βπEt
[
φst+1 +

(
ε̄+ δθ

∫ ε∗t+1

εL

(ε∗t+1 − εi)dG (εi)

+ α (1− η)

∫ [
φmt+1A

m
It+1

as
t+1i

−φst+1

]
1

yt+1

εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj)

)
yt+1

]
(22)

where (19) holds with “=” if ãmt+1d > 0, (20) holds with “=” if ãst+1d > 0, (21) holds with “=”

if ãmt+1i > 0, and (22) holds with “=” if ãst+1i > 0.

9Consider the penultimate term: with probability α the investor contacts another investor in the OTC market,
if the other investor’s preference type, εj , is smaller than εi, then the investor with preference type εi has the
bargaining power with probability η and he spends min [amti , p

o
t (εj)A

s
It] dollars purchasing min [amti /p

o
t (εj) , A

s
It]

equity shares from the other investor, for a net gain from trade equal to

(εiyt + φst ) min [amti /p
o
t (εj) , A

s
It]− φmt min [amti , p

o
t (εj)A

s
It] =

(εi − εj) yt
εjyt + φst

min [φmt a
m
ti , (εjyt + φst )A

s
It] .

Similarly, with probability α the investor contacts another investor in the OTC market, and if the other investor’s
preference type, εj , is larger than εi, then the investor with preference type εi has the bargaining power with
probability 1− η and he sells min [AmIt/p

o
t (εj) , a

s
ti] equity shares in exchange for min [AmIt, p

o
t (εj) a

s
ti] dollars, for

a net gain from trade equal to

φmt min [AmIt, p
o
t (εj) a

s
ti]− (εiyt + φst ) min [AmIt/p

o
t (εj) , a

s
ti] =

(εj − εi) yt
εjyt + φst

min [φmt A
m
It, (εjyt + φst ) a

s
ti] .

18



Condition (19) is a dealer’s Euler equation for money. The left side is the real cost of

purchasing a dollar (in terms of the homogeneous good) in the second subperiod of period t.

The right side is the discounted expected gain from this marginal dollar in the following period,

i.e., the dealer can choose to hold on to the dollar until the second subperiod of t+ 1 to obtain

φmt+1 homogeneous consumption goods, or he can sell the dollar in the interdealer market of the

following OTC round for 1/pt+1 equity shares, each of which will be worth φst+1 homogeneous

goods in the second subperiod of t+ 1. Naturally, the dealer will choose the best of these two

trading strategies. The dealer holds no money overnight if the left side of (19) exceeds the right

side. Condition (20) is a dealer’s Euler equation for equity shares. The left side is the real cost

of purchasing a share (in terms of the homogeneous good) in the second subperiod of t. The

right side is the discounted expected gain from this marginal share in the following period, i.e.,

the tree remains productive with probability π, and in that event the dealer can sell the share

in the interdealer market of the following OTC round for pt+1 dollars, each of which will be

worth φmt+1 homogeneous goods in the second subperiod of t+ 1, or he can choose to hold on to

the share until the second subperiod of period t+ 1 to obtain φst+1 homogeneous consumption

goods. The dealer holds no equity overnight if the left side of (20) exceeds the right side.

Condition (21) is the investor’s Euler equation for money. The left side is the real cost

of purchasing a dollar in the second subperiod of period t. The right side is the discounted

expected benefit from carrying this additional dollar into the following period, which consists of

three components: (i) the expected benefit from holding the dollar until the second subperiod

of period t + 1 (i.e., if the investor does not spend the dollar in the OTC market), (ii) the

expected gain from using the dollar to purchase equity from a dealer in the OTC market of

period t+ 1, and (iii) the expected gain from using the dollar to purchase equity from another

investor in the OTC market of period t+ 1. To interpret (21), it is useful to rewrite it as

φmt ≥ βEt
{
φmt+1 + δθ

[
1−G

(
ε∗t+1

)]
E
[
εiyt+1 + φst+1

pt+1
− φmt+1

∣∣∣∣ εi ≥ ε∗t+1

]
+ αωmt+1(amt+1i, A

s
It+1)ηE

[
εiyt+1 + φst+1

pot+1(εj)
− φmt+1

∣∣∣∣ (εi, εj) ∈ Ωm
t+1(amt+1i, A

s
It+1)

]}
where Et denotes the conditional expectation of yt+1, E [·|·] denotes the conditional expectation

of (εi, εj), and for any (amt+1i, a
s
t+1j) ∈ R2

+,

Ωm
t+1(amt+1i, a

s
t+1j) =

{
(εi, εj) ∈ [εL, εH ]2 : εj < εi and amt+1i < pot+1 (εj) a

s
t+1j

}

19



and ωmt+1(amt+1i, a
s
t+1j) ≡

∫ ∫
I{(εi,εj)∈Ωmt+1(amt+1i,a

s
t+1j)}dG (εi) dG (εj). With probability δθ[1 −

G(ε∗t+1)], the investor contacts a dealer in the OTC market, has bargaining power, and wishes

to purchase equity. In this event, he uses the marginal dollar worth φmt+1 to purchase 1
pt+1

equity

shares each of which yields expected utility from the dividend equal to E
[
εi|εi ≥ ε∗t+1

]
yt+1, and

a resale value of φst+1 homogeneous goods in the second subperiod of t+ 1. With probability α,

investor, call him i, contacts another investor, e.g., investor j. Then ωmt+1(amt+1i, A
s
It+1)η denotes

the joint probability that i’s preference type is higher than j’s (so i acts as a buyer of equity),

and i has bargaining power (which happens with conditional probability η), and the bilateral

gains from trade are constrained by i’s money holdings (which given i’s money holdings, amt+1i,

and j’s equity holdings, AsIt+1, at the time of the trade, occurs if the bilateral dollar price of

equity is large enough, i.e., if j’s individual valuation of equity, εj , is large enough). In this

event, carrying an additional dollar into period t + 1 helps investor i reap gains from trade in

the bilateral trade with the other investor, and i’s expected gain from trading the marginal

dollar is the (conditional expected) value of the additional equity he purchases, i.e., 1
pot+1(εj)

equity shares each worth εiyt+1 + φst+1, minus the value of the dollar, φmt+1.

Condition (22) is the investor’s Euler equation for equity. To interpret this condition it is

useful to rewrite it as

φst ≥ βπEt
{
ε̄yt+1 + φst+1 + δθG

(
ε∗t+1

)
E
[
pt+1φ

m
t+1 −

(
εiyt+1 + φst+1

)
|εi ≤ ε∗t+1

]
+ αωst+1(ast+1i, A

m
It+1) (1− η)E

[
pot+1 (εj)φ

m
t+1 −

(
εiyt+1 + φst+1

)
|(εi, εj) ∈ Ωs

t+1(ast+1i, A
m
It+1)

]}
where for any (ast+1i, a

m
t+1j) ∈ R2

+,

Ωs
t+1(ast+1i, a

m
t+1j) =

{
(εi, εj) ∈ [εL, εH ]2 : εi < εj and pot+1 (εj) a

s
t+1i < amt+1j

}
and ωst+1(ast+1i, a

m
t+1j) ≡

∫ ∫
I{(εi,εj)∈Ωst+1(ast+1i,a

m
t+1j)}dG (εi) dG (εj). The left side is the real

cost of purchasing an additional equity share in the second subperiod of t. The right side is

the discounted expected benefit from carrying an additional equity share into the following

period, which consists of three terms. First, ε̄yt+1 + φst+1, the expected benefit of holding the

equity share until the end of period t+1 (i.e., if the investor does not sell the equity in the OTC

market). Second, with probability δθG(ε∗t+1), the investor contacts a dealer in the OTC market,

has bargaining power, and wishes to sell equity. In this event, he obtains pt+1φ
m
t+1 dollars

for selling the marginal equity share which he expects to value E
[
εiyt+1 + φst+1|εi ≤ ε∗t+1

]
.

Finally, with probability α investor i contacts another investor j in the OTC market. Then
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ωst+1(ast+1i, A
m
It+1) (1− η) denotes the joint probability that i’s preference type is lower than j’s

(so i acts as a seller of equity), and i has bargaining power (which happens with conditional

probability 1−η), and the bilateral gains from trade are constrained by i’s equity holdings (which

given i’s equity holdings, ast+1i, and j’s money holdings, AmIt+1, at the time of the trade, occurs

if the bilateral dollar price of equity is low enough, i.e., if j’s individual valuation of equity, εj ,

is low enough). In this event, an additional equity share helps investor i reap gains from trade

in the bilateral trade with the other investor, and i’s expected gain from trading the marginal

share is the (conditional expected) value of the real balances he receives, i.e., pot+1 (εj)φ
m
t+1,

minus the (conditional expected) value of the equity share he sells, i.e., εiyt+1 + φst+1.

Let AmDt+1 and AsDt+1 denote the quantities of money and equity shares, respectively, held by

all dealers at the beginning of the OTC round of period t+1, i.e., AmDt+1 = v
∫
amt+1ddF

D
t+1 (at+1d),

and AsDt+1 = v
∫
ast+1ddF

D
t+1 (at+1d). Let ÃmDt+1 and ÃsDt+1 denote the total quantities of money

and shares held by all dealers at the end of period t, i.e., AmDt+1 = ÃmDt+1 and AsDt+1 = πÃsDt+1.

Similarly, let ÃmIt+1 and ÃsIt+1 denote the total quantities of money and shares held by all in-

vestors at the end of period t, i.e., AmIt+1 = ÃmIt+1 and AsIt+1 = πÃsIt+1 + (1− π)As. Let ĀmDt

and ĀsDt denote the quantity of money and shares held after the OTC round of trade of period

t by all the dealers who are able to trade in the first subperiod. Similarly, let ĀmIt and ĀsIt

denote the quantity of money and shares held after the OTC round of trade of period t by all

the investors who are able to trade in the first subperiod. For k = s,m,

ĀkDt = κvθ

∫
âkd [ād (ati,atd, ε;ψt) ;ψt] dF

D
t (atd) dF

I
t (ati) dG (ε)

+ κv (1− θ)
∫
âkd [ād∗ (ati,atd, ε;ψt) ;ψt] dF

D
t (atd) dF

I
t (ati) dG (ε)

+ (1− κ) v

∫
âkd(atd;ψt)dF

D
t (atd)

and

ĀkIt = δ

∫ [
θaki∗(ati,atd, ε;ψt) + (1− θ) aki (ati,atd, ε;ψt)

]
dFDt (atd) dF

I
t (ati) dG (ε)

where ād (ati,atd, ε;ψt) ≡ (amd (ati,atd, ε;ψt), a
s
d(ati,atd, ε;ψt)). We are now ready to define

equilibrium.

Definition 1 An equilibrium is a sequence of terms of trade in the OTC market

{〈ātd, ātd∗ , âtd〉d∈D , 〈āti∗ , āti,ati∗ ,ati〉i∈I}∞t=0,
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as given in Lemma 1, Lemma 2, and Lemma 3, together with a sequence of asset holdings

{〈at+1d, ãt+1d〉d∈D , 〈at+1i, ãt+1i〉i∈I}∞t=0

and prices {ψt}∞t=0 ≡ {1/pt, φmt , φst}∞t=0, such that for all t, (i) the asset allocation solves the

individual optimization problems (8) and (11) taking prices as given, and (ii) prices are such

that all Walrasian markets clear, i.e., ÃsDt+1 + ÃsIt+1 = As (the end-of-period-t Walrasian

market for equity), ÃmDt+1 + ÃmIt+1 = Amt+1 (the end-of-period-t Walrasian market for money),

and ĀkDt + ĀkIt = AkDt + δAkIt for k = s,m (the period-t OTC interdealer market for equity and

money). An equilibrium is “monetary” if φmt > 0 for all t, and “nonmonetary” otherwise.

In what follows, we specialize the analysis to stationary equilibria. That is, equilibria in

which asset holdings are constant over time, i.e., AsDt = AsD and AsIt = AsI , real asset prices

are time-invariant functions of the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄st = φ̄syt,

φmt A
m
It = Zyt, and φmt A

m
Dt = ZDyt. Hence, in a stationary equilibrium, ε∗t = φ̄s − φs ≡ ε∗,

φst+1/φ
s
t = φ̄st+1/φ̄

s
t = γt+1, φmt /φ

m
t+1 = µ/γt+1, and pt+1/pt = µ. Throughout the analysis we

let β̄ ≡ βγ̄ and maintain the assumption µ > β̄, but the following proposition considers the

limiting case µ→ β̄.

Proposition 2 The allocation implemented by the stationary monetary equilibrium converges

to the symmetric efficient allocation as µ→ β̄.

Let qBt,k denote the nominal price in the second subperiod of period t of an N -period risk-

free pure-discount nominal bond that matures in period t + k, for k = 0, 1, 2, ..., N (so k is

the number of periods until the bond matures). Assume that the bond is illiquid in the sense

that it cannot be traded in the OTC market. Then in a stationary monetary equilibrium,

qBt,k = (β̄/µ)k, and

ι =
µ− β̄
β̄

(23)

is the time-t nominal yield to maturity of the bond with k periods until maturity.10 Thus,

the optimal monetary policy described in Proposition 2 in which the money supply grows at

rate β̄ can be interpreted as a policy that implements the Friedman rule, i.e., ι = 0 for all

contingencies at all dates.

10See Lemma 9 in the appendix for details.
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4.1 Pure-dealer OTC market

In this section we consider the case with α = 0, i.e., a market in which all OTC trade is

intermediated by dealers and there is no direct bilateral trade among investors. For the analysis

that follows, it is convenient to define

µ̂ ≡ β̄
[

1 +
(1− δθ)

(
1− β̄π

)
(ε̂− ε̄)

ε̂

]
and µ̄ ≡ β̄

[
1 +

δθ
(
1− β̄π

)
(ε̄− εL)

β̄πε̄+
(
1− β̄π

)
εL

]
(24)

where ε̂ ∈ [ε̄, εH ] is the unique solution to

ε̄− ε̂+ δθ

∫ ε̂

εL

G (ε) dε = 0. (25)

Lemma 6 (in the appendix) establishes that µ̂ < µ̄. The following proposition summarizes the

equilibrium set.

Proposition 3 Assume α = 0. (i) A nonmonetary equilibrium exists for any parametrization.

(ii) There is no stationary monetary equilibrium if µ ≥ µ̄. (iii) In the nonmonetary equilibrium,

AsI = As − AsD = As (only investors hold equity shares), there is no trade in the OTC market,

and the equity price in the Walrasian market is

φst = φsyt, with φs =
β̄π

1− β̄π ε̄. (26)

(iv) If µ ∈ (β̄, µ̄), then there is one stationary monetary equilibrium; asset holdings of dealers

and investors at the beginning of the OTC round of period t are AmDt = Amt −AmIt = 0 and

AsD = As −AsI


= πAs if β̄ < µ < µ̂
∈ [0, πAs] if µ = µ̂
= 0 if µ̂ < µ < µ̄,

and asset prices are

φst = φsyt, with φs =


β̄π

1−β̄πε
∗ if β̄ < µ ≤ µ̂

β̄π
1−β̄π

[
ε̄+ δθ

∫ ε∗
εL
G (ε) dε

]
if µ̂ < µ < µ̄

(27)

φ̄st = φ̄syt, with φ̄s = ε∗ + φs (28)

φmt = Z
yt
Amt

(29)

pt =
φ̄s

Z
Amt (30)
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where

Z =
AsD + δG(ε∗)AsI

δθ [1−G(ε∗)] 1
ε∗+φs + δ (1− θ)

∫ εH
ε∗

1
ε+φsdG (ε)

, (31)

and for any µ ∈
(
β̄, µ̄

)
, ε∗ ∈ (εL, εH) is the unique solution to(

1− β̄π
) ∫ εH

ε∗ [1−G (ε)] dε

ε∗ + β̄π
[
ε̄− ε∗ + δθ

∫ ε∗
εL
G (ε) dε

]
I{µ̂<µ}

− µ− β̄
β̄δθ

= 0. (32)

(v) (a) As µ→ µ̄, ε∗ → εL and φst → β̄π
1−β̄π ε̄yt. (b) As µ→ β̄, ε∗ → εH and φst → β̄π

1−β̄πεHyt.

In the nonmonetary equilibrium, dealers are inactive and equity shares are held only by

investors. With no valued money, investors and dealers cannot exploit the gains from trade

that arise from the heterogeneity in preference types in the first subperiod of every period,

and the equilibrium real asset price, φs = β̄π
1−β̄π ε̄y, is equal to the expected discounted value

of the dividend stream since the equity share is not traded. (Shares can be traded in the

Walrasian market of the second subperiod, but gains from trade at that stage are nil.) The

stationary monetary equilibrium exists only if the inflation rate is not too high, i.e., if µ < µ̄.

In the monetary equilibrium, the marginal preference type, ε∗, which according to Lemma 2

partitions the set of investors into those who buy and those who sell the asset when they meet

a dealer in the OTC market, is characterized in part (iv) of Proposition 3. In the OTC market,

investors with ε < ε∗ who contact dealers sell all their equity holdings for money, while investors

with ε > ε∗ who contact dealers spend all their money buying equity. Thus unlike what happens

in the nonmonetary equilibrium, the OTC market is active in the monetary equilibrium, and

it is easy to show that the marginal type, ε∗, is strictly decreasing in the rate of inflation, i.e.,

∂ε∗

∂µ < 0 both for µ ∈
(
β̄, µ̂

)
, and for µ ∈ (µ̂, µ̄) (see Corollary 2 in the appendix). Intuitively, the

real value of money falls as µ increases, and the marginal investor type, ε∗, decreases, reflecting

the fact that under the higher inflation rate, the investor that was marginal under the lower

inflation rate is no longer indifferent between carrying cash and equity out of the OTC market

(he prefers equity).

According to Proposition 3, φsyt < (φs + ε∗)yt = ptφ
m
t in the monetary equilibrium, so

Lemma 1 implies that dealers hold no equity shares at the end of the OTC round: all equity is

held by investors, in particular, by those investors who carried equity into the period but were

unable to contact a dealer, and by those investors who purchased equity shares from dealers.

After the round of OTC trade, all the money supply is held by the investors who carried cash
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into the period but were unable to contact a dealer, by the investors who sold equity shares

to dealers, and by those dealers who had bargaining power in the OTC negotiations or carried

equity into the OTC market. A feature of the monetary equilibrium is that dealers never hold

money overnight: at the beginning of every period t, the money supply is all in the hands of

investors, i.e., AmDt = 0 and AmIt = Amt .11 The reason is that access to the interdealer market

allows dealers to intermediate assets without having to carry cash. Whether it is investors

or dealers who hold the equity overnight, depends on the inflation rate: if it is low, i.e., if

µ ∈ (β̄, µ̂), then only dealers hold equity shares overnight, that is, ÃsDt+1 = As and ÃsIt+1 = 0

for all t. Conversely, if the inflation rate is high, i.e., if µ ∈ (µ̂, µ̄), then at the end of every

period t, all equity shares are in the hands of investors, i.e., ÃsDt+1 = 0 and ÃsIt+1 = As.

To understand this result, it is useful to inspect the Euler equations for equity shares. In a

stationary equilibrium, (20) reduces to

1 ≥ βπEt
max

(
pt+1φ

m
t+1, φ

s
t+1

)
φst

1 ≥ βπRsD (ε∗) , “ = ” if ÃsDt+1 > 0, (33)

where

RsD (ε∗) ≡ Et
max

(
pt+1φ

m
t+1, φ

s
t+1

)
φst

=
ε∗ + φs

φs
γ̄.

Dealers do not wish to hold equity overnight if (33) holds with strict inequality. The equilibrium

return to a dealer from holding equity overnight, RsD (ε∗), consists of the expected capital gain

from purchasing equity in the second subperiod and reselling it in the OTC market of the

following period. Similarly, in a stationary equilibrium (22) reduces to

1 ≥ βπRsI (ε∗) , “ = ” if ÃsIt+1 > 0, (34)

where

RsI (ε∗) ≡ Et

[
ε̄+ φs + δθ

∫ ε∗
εL

(ε∗ − ε)dG (ε)
]
yt+1

φsyt

= G (ε∗)

{
δθ
φ̄s

φs
γ̄ + [(1− δ) + δ (1− θ)] ε̄

∗l + φs

φs
γ̄

}
+ [1−G(ε∗)]

ε̄∗h + φs

φs
γ̄,

ε̄∗l ≡
∫ ε∗
εL
εdG(ε)
G(ε∗) , and ε̄∗h ≡

∫ εH
ε∗ ε dG(ε)

1−G(ε∗) . Investors do not wish to hold equity overnight if

(34) holds with strict inequality. The equilibrium expected return to an investor from holding

11In a stationary equilibrium, (19) becomes µφ̄s > β̄max
(
φ̄s, φs

)
= β̄φ̄s.
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equity overnight, RsI (ε∗), can be thought of as a weighted average of four gross returns. The

first, φ̄
s

φs γ̄, is the expected capital gain of an investor who sells equity in the OTC market at the

interdealer market price (φ̄s), which is what occurs with probability G (ε∗) δθ, i.e., when the

investor draws a preference type lower than ε∗ (so he wishes to sell in the OTC market), contacts

a dealer, and has the bargaining power. The second, ε̄∗l+φs

φs γ̄, is the expected equity return to

an investor who wishes to sell in the OTC market but fails to contact a dealer, which occurs

with probability G(ε∗) (1− δ). In this case the expected equity payoff consists of the expected

value of the period dividend conditional on wanting to sell, Etε̄∗lyt+1, and the expected resale

value of the equity in the following Walrasian round of trade, Etφsyt+1. The third, also ε̄∗l+φs

φs γ̄,

is the expected capital gain of an investor who sells equity in the OTC market at the dealer’s

expected bid price, Et(ε̄∗l + φs)yt+1, that (in expected value) reaps all the gains from trade

from an investor who wishes to sell, an event that occurs with probability G (ε∗) δθ, i.e., when

the investor draws a preference type lower than ε∗ (so he wishes to sell in the OTC market),

contacts a dealer, and the dealer has the bargaining power. The fourth, ε̄
∗h+φs

φs γ̄, is the expected

equity return of an investor who does not wish to sell in the OTC market and therefore keeps

the equity share for a full period, which occurs with probability 1 − G(ε∗). In this case the

expected equity payoff consists of the expected value of the period dividend conditional on not

wanting to sell, Etε̄∗hyt+1, and the resale value of the equity in the following Walrasian round

of trade, Etφsyt+1.

From (33) and (34), dealers hold all equity shares overnight (i.e., ÃsDt+1 = As and ÃsIt+1 = 0)

if and only if RsI (ε∗) < RsD (ε∗), i.e., if and only if ε̄+ δθG (ε∗) (ε∗ − ε̄∗l) < ε∗. This condition

is equivalent to

ε̄+ δθ

∫ ε∗

εL

G (ε) dε < ε∗,

which is in turn equivalent to ε̂ < ε∗, where ε̂ is defined by (25). Intuitively then, all equity

is held by dealers overnight if the marginal preference type that partitions investors between

buyers and sellers is large enough (larger than ε̂), else all equity is held by investors overnight,

and strictly speaking, dealers only provide brokerage services in the OTC market.12

12To get more intuition, write RsI (ε∗) = [ε̄ + δθG (ε∗) (ε∗ − ε̄∗l) + φs]γ̄/φs and notice that ∂RsI (ε∗) /∂ε∗ =
δθG (ε∗) γ̄/φs < γ̄/φs = ∂RsD (ε∗) /∂ε∗ and

εL + φs

φs
γ̄ = RsD (εL) < RsI (εL) =

ε̄+ φs

φs
γ̄ <

[δθεH + (1− δθ) ε̄] + φs

φs
γ̄ = RsI (εH) < RsD (εH) =

εH + φs

φs
γ̄.

This reasoning is in terms of ε∗ while Proposition 3 is stated in terms of µ, but there is a monotonic relationship
between µ and ε∗. In the proof of this proposition it is shown that ε̂ < ε∗ if and only if µ < µ̂.
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Given the marginal preference type, ε∗, part (iv) of Proposition 3 gives all asset prices in

closed form. The real price of equity (in terms of the homogeneous consumption good) in the

Walrasian round of trade, φst , is given by (32). The dollar price of equity in the OTC market,

pt, is given by (30). The real price of money (in terms of the homogeneous consumption good)

in the Walrasian round of trade, φmt , is given by (29). The real price of equity (in terms of the

homogeneous consumption good) in the OTC market, ptφ
m
t = φ̄syt is given by (28).

Finally, part (v)(a) states that as the rate of money creation rises toward µ̄, ε∗ approaches

the lower bound of the type distribution, εL, so no investor wishes to sell equity in the OTC

market, and as a result the allocations and prices of the monetary equilibrium approach those

of the nonmonetary equilibrium. Part (v)(b) states that as the rate of money creation falls

toward β̄, ε∗ increases toward the upper bound of the type distribution, εH , so only investors

with the highest preference type purchase equity in the OTC market (all other investors wish

to sell it).

4.2 Non-intermediated OTC market

In this section we consider the case with δ = 0, i.e., a market in which there are no specialized

dealers and all OTC trade is conducted bilaterally among investors. Let

µ̃ ≡ β̄
[

1 + αη

∫ εH

εL

∫ εH

εj

εi − εj
εj + βπ

1−βπ ε̄
dG (εi) dG (εj)

]
, (35)

and define the function ϕ : [εL, εH ]→ R by

ϕ (ε) ≡
∫ ε

εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj) .

Proposition 4 Assume δ = 0. (i) Dealers are inactive in any equilibrium, and a nonmonetary

equilibrium exists for any parametrization. (ii) There is no stationary monetary equilibrium if

µ ≥ µ̃. (iii) In the nonmonetary equilibrium there is no trade in the OTC market, and the

equity price in the Walrasian market is

φs =
β̄π

1− β̄π ε̄y.

(iv) If µ ∈ (β̄, µ̃), then there is one stationary monetary equilibrium and asset prices are

φst = φsyt, with φs =
β̄π

1− β̄π [ε̄+ α (1− η)ϕ (εc)] (36)

φmt = Z
yt
Amt
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where

Z = (εc + φs)As, (37)

and for any µ ∈
(
β̄, µ̃

)
, εc ∈ (εL, εH) is the unique solution to∫ εH

εc

∫ εH

εj

(1− β̄π) (εi − εj)
(1− β̄π)εj + β̄π [ε̄+ α (1− η)ϕ (εc)]

dG (εi) dG (εj)−
µ− β̄
β̄αη

= 0. (38)

(v) (a) As µ → µ̃, εc → εL and φst → β̄π
1−β̄π ε̄yt. (b) As µ → β̄, εc → εH and φst →

β̄π
1−β̄π [ε̄+ α (1− η)ϕ (εH)] yt.

The interdealer market is inactive when δ = 0, and so are dealers. A stationary monetary

equilibrium does not exist if the inflation rate is too large, i.e., if µ ≥ µ̃, and in this case there

is no equity trade and the equity price is equal to the expected discounted present value of

the dividend. If the inflation rate is low enough, i.e., µ ∈ (β̄, µ̃), then a unique stationary

equilibrium exists. In this case an investor i starts every period t with a portfolio of money and

equity, and he is randomly matched with another investor j during the OTC round of trade.

If i’s preference shock is larger than j’s, i.e., if εj < εi, then i will want to purchase all of j’s

equity holdings. Whether he is able to do so depends the quantity of assets that j holds, which

in equilibrium equals As, and the dollar price that i has to pay for the equity. In turn, the

dollar price will depend on whether investor i or investor j has the bargaining power. If i has

the power (this happens with probability η), then the dollar price he pays j for each unit of

equity is pot (εj) =
εjyt+φ

s
t

φmt
, and since i holds Amt dollars in equilibrium, he can afford to buy all

of j’s equity only if
εjyt+φ

s
t

φmt
As ≤ Amt , or equivalently, if (εj + φs)As ≤ Z which using (37) can

be rewritten as εj ≤ εc. Thus as µ falls, real balances and εc increase, and the investor who

wishes to buy equity and has the bargaining power, is cash constrained in a smaller fraction of

the bilateral meetings. The value of money depends on the gains from trade of the relatively

high valuation investors who buy equity. The equity price (36) on the other hand, reflects the

gains from trade of the relatively low valuation investors who sell equity in bilateral transactions

(α (1− η)ϕ (εc) captures the expected gain from selling equity to another investor in the OTC

round).

5 Asset prices

In this section we study the properties of the equilibrium asset prices in Proposition 3 and

Proposition 4. In particular, we focus on how they depend on monetary policy and the degree
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of OTC frictions as captured by the parameters that regulate trading frequency and the relative

bargaining strengths of the various traders.

5.1 Inflation

In a pure-dealer OTC market, the real price of equity in a monetary equilibrium is in part

determined by the option available to low-valuation investors to resell the equity to high-

valuation investors. As µ increases, equilibrium real money balances fall and the marginal

investor type, ε∗, decreases reflecting the fact that under the higher inflation rate, the investor

type that was marginal under the lower inflation rate is no longer indifferent between carrying

cash and equity out of the OTC market (he prefers equity). Since the marginal investor who

prices the equity in the OTC market has a lower valuation, the value of the resale option is

smaller, which in turn makes the real equity price (both φs and φ̄s) smaller. As expected, the

real value of money, φmt , also declines with the rate of inflation. These arguments are formalized

in Proposition 5. The top row of Figure 1 illustrates the time paths of the ex-dividend equity

price, φst , real balances φmt A
m
t , and the price level, φmt for different values of µ.

Proposition 5 Consider the formulation with α = 0. In the stationary monetary equilibrium:

(i) ∂φs/∂µ < 0, (ii) ∂φ̄s/∂µ < 0, (iii) ∂Z/∂µ < 0 and ∂φmt /∂µ < 0.

In a non-intermediated OTC market, the real price of equity in a monetary equilibrium is

also in part determined by the option available to low-valuation investors to resell the equity

to high-valuation investors. A higher inflation rate causes real money balances to decline. This

reduction in real balances enlarges the set of joint realizations of preference types in bilateral

meetings in which the cash constraint binds for high-valuation buyers. In turn, this reduces

the value of the marginal preference type, εc, of the buyer who is just able to purchase all of

the equity from a seller in a bilateral meeting in which the seller has the bargaining power.

The result is that ex ante, the period before the OTC round, investors anticipate that the

expected gains from selling equity in the OTC market are smaller, and this manifests itself as

a smaller equity price in the centralized round of trade. The following proposition formalizes

this intuition.

Proposition 6 Consider the formulation with δ = 0. In the stationary monetary equilibrium:

(i) ∂φs/∂µ < 0, (ii) ∂Z/∂µ < 0 and ∂φmt /∂µ < 0.
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5.2 OTC frictions: trading delays and market power

In a pure-dealer OTC market, δθ is an investor’s effective bargaining power in negotiations

with dealers. A larger δθ implies a larger gain from trade for low-valuation investors when they

off-load the asset onto dealers in the OTC market. This in turn makes investors more willing to

hold equity shares in the centralized market of the previous period, since they anticipate larger

gains from selling the equity in case they were to draw a relatively low preference type in the

following OTC round. As a result, real equity prices, φs and φ̄s, are increasing in δ and θ. If

δ increases, money becomes more valuable (both Z and φmt increase), provided we focus on a

regime in which only investors carry equity overnight.13 Proposition 7 formalizes these ideas.

The bottom row of Figure 1 illustrates the time paths of the ex-dividend equity price, φst , real

balances φmt A
m
t , and the price level, φmt for two different values of δ.

Proposition 7 Consider the formulation with α = 0. In the stationary monetary equilibrium:

(i) ∂φs/∂ (δθ) > 0, (ii) ∂φ̄s/∂ (δθ) > 0, (iii) ∂Z/∂δ > 0 and ∂φmt /∂δ > 0, for µ ∈ (µ̂, µ̄).

The following proposition establishes that in a non-intermediated OTC market, the value of

holding equity increases with the bilateral meeting probability, as this increases the probability

that the investor may find an opportunity to sell the asset to another investor with higher

valuation. Similarly, the value of money increases with α as this increases the probability the

investor may be able to use money to buy equity if he were to meet a counterparty with lower

valuation.

Proposition 8 Consider the formulation with δ = 0. In the stationary monetary equilibrium:

(i) ∂φs/∂α > 0, (ii) ∂Z/∂α > 0 and ∂φmt /∂α > 0.

6 Financial liquidity

In this section we use the theory to study the determinants of standard measures of market

liquidity: liquidity provision by dealers, trade volume, and bid-ask spreads. Broker-dealers

in OTC markets provide liquidity (immediacy) to investors by finding them counterparties

for trade, and/or by trading with them out of their own account, effectively becoming their

counterparty. Trade volume is a manifestation of the ability of the OTC market to reallocate

13Real balances can actually fall with δ for µ ∈ (β̄, µ̂).
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assets across investors. Bid-ask spreads constitute the main out-of-pocket transaction cost

that investors bear in OTC markets. Section 6.1 focuses on dealers’ decisions to hold asset

inventories with the purpose of becoming trade counterparties for investors. Section 6.2 focuses

on the determinants of trade volume. Bid-ask spreads are analyzed in Section 6.3.

6.1 Liquidity provision by dealers

To simplify the exposition, here we focus on the formulation with α = 0. The following result

characterizes the effect of inflation on dealers’ provision of liquidity by accumulating assets.

Proposition 9 Consider the formulation with α = 0. In the stationary monetary equilibrium:

(i) dealers’ provision of liquidity by accumulating assets, i.e., AsD, is nonincreasing in the

inflation rate. (ii) For any µ close to β̄, dealers’ provision of liquidity by accumulating assets is

nonmonotonic in δθ, i.e., AsD = 0 for δθ close to 0 and close to 1, but AsD > 0 for intermediate

values of δθ.

To understand part (i) of Proposition 9, recall the discussion that followed Proposition 3. The

expected return from holding equity is larger for investors than for dealers with high inflation

(µ > µ̂) because in that case the expected resale value of equity in the OTC market is relatively

low, and dealers only buy equity to resell in the OTC market, while investors also buy it with

the expectation of getting utility from the dividend flow. For low inflation (µ < µ̂), dealers

value equity more than investors because the OTC resale value is high and they have a higher

probability of making capital gains from reselling than investors, and this trading advantage

more than compensates for the fact that investors enjoy the additional utility from the dividend

flow. Part (ii) of Proposition 9 states that given a low enough rate of inflation, dealers’ incentives

to hold equity inventories overnight depend nonmonotonically on the degree of OTC frictions

as measured by δθ. In particular, dealers will not hold inventories if δθ is either very small or

very large. If δθ is close to zero, few investors contact the interdealer market, and this makes

the equity price in the OTC market very low, which in turn implies too small a capital gain

to induce dealers to hold equity overnight. Conversely, if δθ is close to one, a dealer has no

trading advantage over an investor in the OTC market and since the investor gets utility from

the dividend while the dealer does not, the investor has a higher willingness to pay for the asset

in the centralized market than the dealer, and therefore it is investors and not dealers who

carry the asset overnight into the OTC market.
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6.2 Volume

First consider the case with α = 0. According to Lemma 2, any investor with ε < ε∗t who has a

trading opportunity in the OTC market, sells all his equity. Hence in a stationary equilibrium,

the quantity of assets sold by investors to dealers in the OTC market is Q− = δG (ε∗)AsI . From

Lemma 2 we also know that an investor with ε > ε∗t who contacts a dealer will buy equity, and

that the quantity he buys depends on whether the investor or the dealer has the bargaining

power. If the investor has the bargaining power then he purchases Amt /pt equity shares. Thus

the volume of assets traded by such investors is Q+∗ = δθ [1−G (ε∗)]Amt /pt. If instead the

dealer has the bargaining power, then the investor purchases Amt /p
o
t (ε) equity shares. Therefore

the volume of assets traded by such investors is Q+ = δ (1− θ)
∫ εH
ε∗ [Amt /p

o
t (ε)] dG (ε). The total

quantity of equity shares traded in the OTC market is V = Q− +Q+∗ +Q+, or equivalently14

V = πÃsD + 2δG (ε∗) (As − πÃsD). (39)

Trade volume V depends on µ and θ only indirectly, through ε∗. A decrease in µ or an increase

in θ, increases the expected return to holding money, which makes more investors willing to sell

equity for money in the OTC market, i.e., ε∗ increases and so does trade volume. The indirect

(through ε∗) positive effect on V of an increase in the investors’ trade probability δ is similar to

an increase in θ, but in addition, δ directly increases trade volume since with a higher δ more

investors are able to trade in the OTC market. These results are summarized in the following

proposition.

Proposition 10 Consider the formulation with α = 0. In the stationary monetary equilibrium:

(i) ∂V/∂µ < 0, (ii) ∂V/∂θ > 0 and ∂V/∂δ > 0.

Next consider the formulation with δ = 0. According to Lemma 3, the quantity traded

in a meeting between two investors depends on whether the buyer or the seller of equity

has the bargaining power. Suppose that investor i has preference type εi and investor j

has preference type εj < εi. If investor i (in this case the buyer) makes the offer, then

he purchases min {Amt /pot (εj) , A
s} = I{εc<εj}

Z
εj+φs

+ I{εj≤εc}A
s equity shares. Conversely,

if investor j has the bargaining power, then investor i purchases min {Amt /pot (εi) , A
s} =

14To obtain (39) we used the clearing condition for the interdealer market, AsD+Q− = Q+ +Q+∗ which implies
V =Q−+Q+∗+Q+ = AsD + 2Q−. Also, note that V is trade volume in the OTC market, but since every equity
share traded in the first subperiod gets retraded in the second subperiod, total trade volume in the whole time
period equals 2V.
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I{εc<εi}
Z

εi+φs
+ I{εi≤εc}A

s equity shares. Hence the total quantity of equity shares traded in the

OTC market is

Ṽ = α

{
η

[∫ εc

εL

[1−G (εj)] dG (εj) +

∫ εH

εc

∫ εH

εj

εc + φs

εj + φs
dG (εi) dG (εj)

]

+ (1− η)

[∫ εc

εL

G (εi) dG (εi) +

∫ εH

εc

∫ εi

εL

εc + φs

εi + φs
dG (εj) dG (εi)

]}
As.

In trades where the investor with no bargaining power has preference type ε < εc, all the equity

holdings of the seller, As, are traded. In meetings where the investor with no bargaining power

has preference type ε > εc, the cash constraint of the buyer binds, and only Z
εj+φs

= (εc+φs)As

εj+φs

equity shares are traded. Notice that inflation only affects Ṽ indirectly, through its effect on εc

(or equivalently, real balances, Z). Higher inflation reduces the value of real balances and this

implies that the cash constraint will bind in more trades, causing trade volume to decline along

the intensive margin (i.e., by reducing the quantity of equity traded in trades in which the agent

with no bargaining power has relatively high valuation for the dividend). An increase in the

contact probability α increases Ṽ along the extensive margin (more meetings among investors

naturally result in larger trade volume), but an increase in α also increases real balances and

therefore induces an increase in trade volume along the intensive margin. This intuition is

formalized in the following proposition.

Proposition 11 Consider the formulation with δ = 0. In the stationary monetary equilibrium:

(i) ∂Ṽ/∂µ < 0, and (ii) ∂Ṽ/∂α > 0.

6.3 Spreads

Focus on the formulation with α = 0. Corollary 1 shows that when dealers with bargaining

power execute trades on behalf of their investors, they charge an ask price pot (ε) > pt to investors

with ε > ε∗ who wish to buy equity, and pay a bid price pot (ε) < pt to investors with ε < ε∗

who wish to sell equity. Thus in any transaction with an investor with preference type ε, the

dealer earns a nominal spread Smt (ε) = |pot (ε)− pt|. Define the real spread S (ε) = Smt (ε) /pt,

i.e.,

S (ε) =
|ε− ε∗|
ε∗ + φs

.

The average real spread is S̄ =
∫
S (ε) dG (ε), i.e.,

S̄ =
1

ε∗ + φs

[∫ ε∗

εL

(ε∗ − ε) dG (ε) +

∫ εH

ε∗
(ε− ε∗) dG (ε)

]
.
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The change in the average spread in response to changes in µ, δ or θ, are ambiguous in general.

The reason is that S (ε) is decreasing in ε∗ for buyers with ε > ε∗, but may be increasing in ε∗

for investors who wish to sell (i.e., those with ε < ε∗).

6.4 Speculation

According to Proposition 3 and Proposition 4, in a monetary equilibrium the equity price, φs,

is larger than the expected present discounted value that any agent assigns to the dividend

stream, i.e., φ̂st ≡
[
β̄π/(1− β̄π)

]
ε̄yt. It is commonplace to define the fundamental value of

the asset to be the expected present discounted value of the dividend stream, and to call any

transaction value in excess of this fundamental value, a bubble.15 One could argue, of course, that

the relevant notion of “fundamental value” should be calculated through market aggregation of

diverse investor valuations, and taking into account the monetary policy stance as well as all the

details of the market structure in which the asset is traded (such as the frequency of trading

opportunities and the degree of market power of financial intermediaries) which ultimately

also factor into the asset price in equilibrium. In any case, to avoid semantic controversies, we

follow Harrison and Kreps (1978) and call the value of the asset in excess of the expected present

discounted value of the dividend, i.e., φst − φ̂st , the “speculative premium” which investors are

willing to pay in anticipation of the capital gains they will reap when reselling the asset to

investors with higher valuations in the future. So like Harrison and Kreps (1978), we say that

investors exhibit speculative behavior if the right to resell a stock makes them willing to pay

more for it than they would pay if obliged to hold it forever. Investors exhibit speculative

behavior in the sense that they buy with the expectation to resell, and naturally the asset price

incorporates the value of this option to resell: investors are willing to pay more for the asset

than they would pay if obliged to hold it forever.

Consider the case pure-dealer case (i.e., α = 0). According to Proposition 3, in a monetary

equilibrium the speculative premium is Pt = Pyt, where

P =

{
β̄π

1−β̄π (ε∗ − ε̄) if β̄ < µ ≤ µ̂
β̄π

1−β̄π δθ
∫ ε∗
εL
G (ε) dε if µ̂ < µ < µ̄.

The speculative premium is positive in any monetary equilibrium, i.e., Pt ≥ 0, with “=” only if

µ = µ̄. Since ∂ε∗/∂µ < 0 (Corollary 2), it is immediate that the speculative premium is decreas-

15See, e.g., Barlevy (2007), Scheinkman and Xiong (2003), and Xiong (2013) who discusses Harrison and Kreps’
paper in the context of what he calls the “resale option theory of bubbles.”
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ing in the rate of inflation. Intuitively, anticipated inflation reduces the real money balances

used to finance asset trading, which limits the ability of high-valuation traders to purchase

the asset from low-valuation traders. As a result, the speculative premium is decreasing in µ.

Since ∂ε∗/∂ (δθ) > 0 (see the proof of Proposition 7), the speculative premium is increasing

in δ and θ. Intuitively, the speculative premium is the value of the option to resell the equity

to a higher valuation investor in the future, and the value of this resale option to the investor

increases with the probability δ that the investor gets a trading opportunity in an OTC trading

round and with the probability θ that he can capture the gains from trade in those trades.

Interestingly, notice that the signs of these effects are exactly the opposite than they are for

trade volume. So in low-inflation regimes, the model predicts large trade volume and a large

speculative premium. Figure 2 illustrates the time path of the speculative premium Pt for two

values of µ. The following proposition summarizes these results.

Proposition 12 Consider the formulation with α = 0. In the stationary monetary equilibrium:

(i) ∂P/∂µ < 0, and (ii) ∂P/∂ (δθ) > 0.

Consider a non-intermediated OTC market (i.e., δ = 0). According to Proposition 4, in a

monetary equilibrium the speculative premium is P̃t = P̃yt, where

P̃ =
β̄π

1− β̄πα (1− η)ϕ (εc) .

Again, P̃t ≥ 0, with “=” only if µ = µ̄. Higher inflation reduces real balances and therefore

εc, which reduces the expected resale value of equity in the OTC market, so P̃ decreases with

inflation. An increase in the trade probability α has a positive direct effect on P̃ (increase in the

meeting probability) and also an indirect positive effect (α increases εc which in turn increases

P̃). These effects are summarized below.

Proposition 13 Consider the formulation with δ = 0. In the stationary monetary equilibrium:

(i) ∂P̃/∂µ < 0, and (ii) ∂P/∂α > 0.

7 Endogenous trading delays

In this section we endogenize the supply of intermediation services and the length of the trading

delays by allowing for free entry of dealers. This formalizes the notion that a dealer’s profit

depends on the competition for order flow that he faces from other dealers.
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In this section we use δ to denote a continuously differentiable function of the measure of

dealers in the market, v, i.e., δ : R+ → [0, 1], and let κ (v) ≡ δ (v) /v. We assume δ′(v) > 0,

κ′ (v) < 0, and δ′′(v) < 0. We also specify δ(0) = limv→∞ κ (v) = 0, and limv→∞ δ (v) = κ (0) =

1. These assumptions capture the notion that if the measure of dealers, v, is larger, then each

investor contacts dealers faster, while the order flow for each individual dealer decreases.16

There is a large measure of dealers who can choose to participate in the market. Dealers who

wish to provide intermediation services in the OTC market of period t + 1 must incur a real

resource cost kt in the second subperiod of period t, i.e., right before they can participate in

the OTC round of trade. This entry cost is in terms of the homogeneous good and represents

the ongoing expenses of running the dealership business. To keep the environment stationary,

we assume kt = kyt for some k ∈ R++.

7.1 Efficiency

With the notation introduced in Section 3, the planner’s problem for the economy with free

entry (and α = 0) consists of choosing a nonnegative allocation{
vt, ãtD, a

′
tD, ctD, htD, ãtI , a

′
tI , [ctI (εi) , htI (εi)]ε∈[εL,εH ]

}∞
t=0

,

to maximize

E0

∞∑
t=0

βt

[
δ (vt)

∫
[εL,εH ]

εyta
′
tI (dε) + [1− δ (vt)] ε̄ytatI

+

∫ εH

εL

[ctI (ε)− htI (ε)] dG (ε) + (ctD − htD)vt

]

subject to

vtãtD + ãtI ≤ As (40)

vta
′
tD + δ (vt)

∫
[εL,εH ]

a′tI (dε) ≤ vtatD + δ (vt) atI (41)∫ εH

εL

ctI (ε) dG (ε) + ctDvt + ktvt+1 ≤
∫ εH

εL

htI (ε) dG (ε) + vthtD, (42)

(6) and (7). The following proposition characterizes the solution to the planner’s problem.

16The matching function δ (v) = 1− e−v is an example that satisfies the maintained assumptions.
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Proposition 14 The efficient allocation for the model with free entry of dealers has

−kyt + βEtδ′ (vt+1) (εH − ε̄) yt+1 (1− π)As ≤ 0, “ = ” if vt+1 > 0, (43)

ãtD = (As− ãtI)/vt = As/vt, and a′ti (E) = I{εH∈E} [π/δ (vt) + (1− π)]As, where I{εH∈E} is an

indicator function that takes the value 1 if εH ∈ E, and 0 otherwise, for any E ∈ F ([εL, εH ]).

7.2 Equilibrium

An equilibrium with free entry is characterized by the same equations that characterize an

equilibrium in the baseline model of Section 2 (replacing δ with δ (vt) and κ with κ (vt)),

plus the following condition, which must hold in an equilibrium in which dealers are free to

participate in the OTC of any period t

WD
t (0)− kt ≤ 0, with “ = ” if vt+1 > 0. (44)

For each t, the free-entry condition (44) can be used to determine the additional unknown vt+1.

Lemma 8 in the appendix shows that (44) can be written as

Φt+1 − kt ≤ 0, with “ = ” if vt+1 > 0 (45)

for all t, where

Φt+1 ≡ βEtκ (vt+1) (1− θ) φ̄t+1

[∫ ε∗t+1

εL

(ε∗t+1−ε)yt+1

ε∗t+1yt+1+φst+1
pt+1A

s
It+1dG (ε)

+

∫ εH

ε∗t+1

(ε−ε∗t+1)yt+1

εyt+1+φst+1
AmIt+1dG (ε)

]
(46)

is a dealer’s discounted expected income from intermediation in the OTC market of period t+1.

In order to interpret Φt+1, it is useful to define Qt+1 (ε) ≡ 1
pot+1(ε)A

m
It+1,

Sbt+1 ≡
∫ ε∗t+1

εL

[pt+1 − pot+1 (ε)]AIt+1

dG (ε)

G
(
ε∗t+1

)
Sat+1 ≡

∫ εH

ε∗t+1

[pot+1 (ε)− pt+1]Qt+1 (ε)
dG (ε)

1−G
(
ε∗t+1

) ,
where pot+1 (ε) (defined in (16)) is the nominal equity price that an investor faces when trading

with a dealer with bargaining power. (So pot+1 (ε) is a nominal bid price for investors with
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ε < ε∗, and the nominal ask price for investors with ε > ε∗.) With this notation, (46) can be

written as

Φt+1 = βEtκ (vt+1) (1− θ)
{
G
(
ε∗t+1

)
Sbt+1 +

[
1−G

(
ε∗t+1

)]
Sat+1

}
φ̄t+1.

Consider a dealer who has the bargaining power in a meeting with a random investor with

preference type ε < ε∗t+1. In equilibrium, this investor wishes to sell the AsIt+1 equity shares that

he is holding to the dealer, who pays the investor pot+1 (ε) dollars per share, therefore earning

pt+1−pot+1 (ε) dollars per share, for a total intermediation profit equal to
[
pt+1 − pot+1 (ε)

]
AsIt+1

dollars. Hence Sbt+1 is the expected value of the dealer’s nominal profit from intermediation,

conditional on having contacted an investor who wants to sell equity. Next consider a dealer who

has the bargaining power in a meeting with a random investor with preference type ε > ε∗t+1. In

equilibrium, this investor wishes to use spend all his money holdings, AmIt+1, to purchase shares

from the dealer. The dealer charges the investor pot+1 (ε) dollars per share, so at this price the

investor wishes to buy Qt+1 (ε) shares from the dealer. The dealer earns pot+1 (ε)− pt+1 dollars

per share in this transaction, for a total intermediation profit equal to
[
pot+1 (ε)− pt+1

]
Qt+1 (ε)

dollars. Hence Sat+1 is the expected value of the dealer’s nominal profit from intermediation, con-

ditional on having contacted an investor who wants to buy equity. Since the dealer can rebalance

his portfolio of equity and cash freely in the interdealer market, the expected real value of his

profit from intermediation is Sat+1φ̄t+1, conditional on having contacted a buyer, and Sbt+1φ̄t+1

conditional on having met a seller. Hence βEt
{
G
(
ε∗t+1

)
Sbt+1 +

[
1−G

(
ε∗t+1

)]
Sat+1

}
φ̄t+1 is the

discounted expected real income from intermediation to a dealer in period t + 1, conditional

on his contacting an investor in the OTC market (with probability κ (vt+1)), and conditional

on the dealer having the bargaining power in the bilateral negotiation with the investor (with

probability 1− θ).
To simplify the exposition hereafter we specialize the analysis to the pure-dealer model with

α = 0. We also focus on stationary equilibria, that is, equilibria in which the measure of dealers

and asset holdings are constant over time, i.e., vt = v, AsDt = AsD, and AsIt = AsI , real asset

prices are time-invariant functions of the aggregate dividend, i.e., φst = φsyt, ptφ
m
t ≡ φ̄st = φ̄syt,

φmt A
m
It = Zyt, and φmt A

m
Dt = ZDyt. Hence, in a stationary equilibrium, ε∗t = φ̄s − φs ≡ ε∗,

φst+1/φ
s
t = φ̄st+1/φ̄

s
t = γt+1, φmt /φ

m
t+1 = µ/γt+1, and pt+1/pt = µ, and Φt = Φ for all t. We

again let β̄ ≡ βγ̄ and maintain the assumption µ > β̄, but the following proposition considers

the limiting case µ → β̄. A stationary equilibrium with entry is summarized by a sequence
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of nominal prices {φmt , pt}, a sequence of real asset prices,
(
φst , φ̄

s
t

)
, a pair of money holdings

(AmD , A
m
I ), a pair of equity holdings (AsD, A), a sequence of real balances, {Zyt}, and a threshold

ε∗ that satisfy the conditions reported in Proposition 3 (with δ replaced by δ (v)), together with

a number of active dealers, v, that satisfies (47)

Φ̄− k ≤ 0, with “ = ” if v > 0, (47)

where

Φ̄ ≡ β̄κ (v) (1− θ)
[
AsI

∫ ε∗

εL

(ε∗ − ε)dG (ε) + Z

∫ εH

ε∗

ε−ε∗
ε+φsdG (ε)

]
. (48)

Proposition 15 Assume k < β̄ (1− θ) (εH − ε̄) (1− π)As. The allocation implemented by

the stationary monetary equilibrium converges to the symmetric efficient allocation as µ → β̄,

provided the bargaining power of dealers satisfies 1− θ = 1− −κ′(v)v
κ(v) .

Proposition 15 establishes that with dealer entry, the Friedman rule achieves efficiency

only if the Hosios (1990) condition is satisfied.17 Under the Hosios condition, the share of

the gain from trade that is apportioned by dealers in bilateral meetings, 1 − θ, equals the

elasticity of the aggregate number of meetings with respect to the number of participating

dealers, 1 +κ′ (v) v/κ (v) (i.e., the contribution that the marginal dealer makes to the matching

process). Thus generically, deviations from the Friedman rule could be welfare enhancing in

the absence of other policies designed to restore the efficiency of the dealers’ entry decision.

8 The Fed Model and the Modigliani-Cohn hypothesis

The high inflation of the 1970s stimulated researchers to ask whether stocks are a good hedge

against inflation. In a well-known paper, Fama and Schwert (1977) found that, contrary to

long-held beliefs, common stocks were rather perverse as hedges against inflation. They found

that common stock returns were negatively related to the expected inflation rate during the

1953-71 period, and that they also seemed to be negatively related to the unexpected inflation

rate.18 In line with these observations, in the late 1970s Modigliani and Cohn (1979) pointed

out that the ratio of market value to profits of firms had declined consistently since the late

17This is a standard result in the monetary search literature, see, e.g., Berentsen et al. (2007).
18At the time of Fama and Schwert’s writing, Lintner (1975), Jaffe and Mandelker (1976), Bodie (1976), and

Nelson (1976) had offered similar empirical evidence. Cagan (1974) is an early effort to study these issues using
some historical records.
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1960s. They observed that this fact was consistent with investors who capitalize equity earnings

using a nominal interest rate instead of a real one, and settled on this kind of money illusion as

the most reasonable explanation. More recently, Sharpe (2002), Asness (2000), Lansing (2004)

and many others have documented that yields on stocks (e.g., as measured by the dividend-

price ratio) are highly correlated with nominal bond yields.19 Since stocks are claims to cash

flows from real capital and inflation is the main driver of nominal interest rates, this correlation

has proven difficult to rationalize with conventional asset pricing theory.20

Theory aside, this correlation has lead financial practitioners to adopt the so-called Fed

Model of equity valuation to calculate the “correct” price of stocks.21 In its simplest form,

the Fed Model says that, because stocks and nominal Treasury bonds compete for space in

investors’ portfolios, their yields should be positively correlated. That is, if the yield on bonds

rises, then the yield on stocks must also rise to maintain the competitiveness of stocks vis a vis

bonds. Practitioners use this reasoning to argue that the yield on nominal bonds (plus a risk

premium to account for the relative riskiness of stocks) defines a “normal” yield on stocks: if

the measured stock yield is below this normal yield, then stocks are considered overpriced; if

the measured stock yield is above this normal yield, then stocks are considered underpriced.22

The relationship between equity prices and monetary policy also appears to have been clear

in the minds of policymakers. Alan Greenspan, for example, famously held the view that stock

market booms are more likely to occur when inflation is low. He saw a dilemma in the use of

monetary policy to defuse stock market booms:

19Along similar lines, Bordo and Wheelock (2007) review the histories of major 20th century stock market
booms in the United States and nine other countries. They find that booms usually arose when inflation was below
its long-run average, and that booms typically ended when inflation began to rise and/or monetary authorities
tightened policy in response to rising or a threatened rise in inflation. Ritter and Warr (2002) argue that the
decline in inflation was a major factor leading to the bull market of 1982-1999.

20See the discussions in Ritter and Warr (2002), Asness (2003), and Campbell and Vuolteenaho (2004).
21Sharpe (2002), Asness (2003), and Feinman (2005) discuss the popularity of the Fed Model among Wall

Street analysts and strategists.
22The term Fed Model appears to have been first used by securities strategist Ed Yardeni in 1997 following

the publication of the Federal Reserve Humphrey-Hawkins Report for July 1997. In Section 2 (“Economic and
Financial Developments in 1997”), a chart plotted the time series for the earnings-price ratio of the S&P 500
against the 10-year constant-maturity nominal treasury yield and reported: “The run-up in stock prices in the
spring was bolstered by unexpectedly strong corporate profits for the first quarter. Still, the ratio of prices in
the S&P 500 to consensus estimates of earnings over the coming twelve months has risen further from levels that
were already unusually high. Changes in this ratio have often been inversely related to changes in long-term
Treasury yields, but this year’s stock price gains were not matched by a significant net decline in interest rates.
As a result, the yield on ten-year Treasury notes now exceeds the ratio of twelve-month-ahead earnings to prices
by the largest amount since 1991, when earnings were depressed by the economic slowdown.”
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“We have very great difficulty in monetary policy when we confront stock market bub-

bles. That is because, to the extent that we are successful in keeping product price inflation

down, history tells us that price-earnings ratios under those conditions go through the roof.

What is really needed to keep stock market bubbles from occurring is a lot of product price

inflation, which historically has tended to undercut stock markets almost everywhere. There

is a clear trade-off. If monetary policy succeeds in one, it fails in the other. Now, unless

we have the capability of playing in between and managing to know exactly when to push

a little here and to pull a little there, it is not obvious to me that there is a simple set of

monetary policy solutions that deflate the bubble.” (Alan Greenspan, FOMC transcript,

September 24, 1996, pp. 30-31.)

To fix ideas, consider a standard Lucas (1978) economy in which a risk-neutral investor with

discount rate β prices a tree that is subject to a shock that renders it permanently unproductive

with probability 1− π. Conditional on remaining productive, the tree yields real dividend Dt,

with Dt+1 = γt+1Dt, where γt+1 is a nonnegative random variable with mean γ̄ ∈ (0, (βπ)−1).

The real price of an equity share of the tree is

P st =
β̄π

1− β̄πDt.

If we set Dt = ε̄yt, this is just the equity price in the nonmonetary equilibrium of Proposition

3. We can use this expression to obtain

D̄t+1

P st
= (1 + r)− γ̄π, (49)

where D̄t+1 ≡ γ̄πDt denotes the expected dividend (conditional only on the tree having survived

period t) and 1 + r = 1/β is the real risk-free rate. Condition (49) is known as the “Gordon

growth model” (e.g., Gordon (1962). Williams (1938)). The left side is the dividend (or stock)

yield, which is equal to the real risk-free rate, 1 + r, minus the expected growth rate of the

real dividend, D̄t+1/Dt = γ̄π. All the variables in (49) are real. In particular, since a rational

investor’s Euler equation equates the expected real equity return to the risk-free real interest

rate, i.e., EtRst+1 = 1 + r, where Rst+1 ≡ π
(P st+1+yt+1)

P st
, the investor uses the real interest rate

r to discount future dividends.23 According to the narrative behind the Fed Model, however,

23As before, Et is the expectation over yt+1, conditional on the information available in period t, as well as on
the tree surviving period t+ 1.
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investors allocate their portfolio between stocks and nominal long-term bonds by comparing

the expected real return on equity to the expected nominal bond yield, i.e., they use the wrong

Euler equation, EtRst+1 = 1 + ι. This leads to

D̄t+1

P st
= (1 + ι)− γ̄π,

which “explains” the positive relation between the nominal bond yield ι = (µ − β̄)/β̄ and the

stock yield D̄t+1/P
s
t by saying that investors suffer from a money illusion in the sense that they

discount future real dividends using the nominal rate, ι, rather than the real rate, r. This is the

Modigliani-Cohn hypothesis. Financial analysts are often ambivalent toward the Fed Model.

On the one hand, it “works.” On the other hand, they are reluctant to recommend it to clients

because the conventional logic behind it is fundamentally flawed; it is inconsistent with investor

rationality.24

Despite much skepticism, however, the Modigliani-Cohn hypothesis remains the leading

explanation for the positive correlation between stock yields and nominal bond yields, and

for the empirical success of the Fed Model. Campbell and Vuolteenaho (2004) empirically

decompose the S&P500 stock yield into three components: (i) a rational forecast of long-run

expected dividend growth, (ii) a subjective risk premium (identified from a cross-sectional

regression), and (iii) a residual “mispricing term.” They evaluate three hypotheses for why

low stock prices coincide with high inflation: (1) High inflation coincides with low expected

24For example, Feinman (2005) (Chief Economist at Deutsche Management Americas in New York) writes:
“If interest rates are to be brought into the calculus at all, they should be real rates, not nominal. This is not
to deny that equity prices seem to be set as if investors are comparing equity yields with nominal interest rates.
But this just demonstrates the error of money illusion. It should not be construed as recommending that error.”
Similarly, Asness (2003) writes: “Historically S&P 500 earnings-price ratio and 10-Year Treasury Rate have
been strongly related... The correlation of these two series over this period [1965-2001] is an impressive +0.81.
I am far from unique in presenting a graph like figure 1. It’s a rare Wall Street strategist that in the course of
justifying the Fed Model (or similar analytic) does not pull out a version of this figure... If you are trying to
explain why price-earning ratios are where they are, based on investors behaving in a similar manner in the past
(errors and all), then feel free to use the Fed Model (hopefully modified for volatility as in this paper), but do
not confuse that with a tool for making long-term recommendations to investors.” Siegel (2002): “It is true that
bonds are the major asset class that competes with stocks in an investor’s portfolio, so one might expect that
low interest rates would be favorable to stocks. But since in the long run low interest rates are caused by low
inflation, the rate of growth of nominal earnings, which depends in large part on the rate of inflation, will be
lower also. Over long periods of time, changes in the inflation rate cause changes in earnings growth of the same
magnitude and do not change the valuation of stocks.” See also Ritter and Warr (2002). Modigliani and Cohn
(1979) themselves expressed some skepticism about their money illusion hypothesis: “. . . we readily admit that
our conclusion is indeed hard to swallow—and especially hard for those of us who have been preaching the gospel
of efficient markets. It is hard to accept the hypothesis of a long-lasting, systematic mistake in a well-organized
market manned by a large force of alert and knowledgeable people.”
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dividend growth. (2) High inflation coincides with a high (subjective) risk premium. (3)

Investors suffer from money illusion. Campbell and Vuolteenaho (2004) assess these hypotheses

by regressing the three components of the dividend yield (the expected dividend growth, risk

premium, and the residual mispricing term) on an exponentially smoothed moving average of

inflation. The regression coefficient of expected dividend growth on inflation is positive and

large, so the raw correlation between inflation and expected dividend growth is not negative

as required by the first hypothesis. The regression coefficient of the risk premium on inflation

is negative but small, indicating that the risk premium is not increasing with inflation as

required by the second hypothesis. Thus, Campbell and Vuolteenaho (2004) reject the two

conventional rational hypotheses for the positive correlation between the dividend yield and

inflation. The regression coefficient of the residual mispricing term on inflation is positive,

large, and statistically significant. Moreover, the R2 on this regression is 77.90, indicating

that inflation accounts for about 80% of the variability in the mispricing term. Based on

this evidence, Campbell and Vuolteenaho (2004) conclude that the positive correlation of the

dividend yield with inflation is mostly due to the mispricing term, i.e., stocks appear to be

undervalued by conventional measures when inflation is high.25 In the remainder of this section

we show our theory offers a novel explanation for this finding: the effects that inflation has on

asset prices through the liquidity (or resalability) channel. The new explanation we propose

will be transparent because our theory does not assume irrational investors that suffer money

25To the extent that these types of studies do not fully control for risk, the results may confound the impact
of risk attitudes and label attribute them to some anomaly such as money illusion. Cohen et al. (2005) revisit
the robustness of the results of Campbell and Vuolteenaho (2004) by further controlling for changes in the risk
premium. They exploit the fact that if the equity premium is high for risk-related reasons, then there is a cross-
sectional implication, namely that high-beta stocks should outperform low-beta stocks in such periods. The
Modigliani-Cohn hypothesis, on the other hand, implies that inflation-driven mispricing will apply to all stocks
equally, causing all stocks to be equally underpriced when inflation is high. Cohen et al. (2005) show the latter
is the case and interpret this as further confirmation of the Modigliani-Cohn hypothesis. Bekaert and Engstrom
(2010) find the bulk of the contribution to the covariance between equity and bond yields comes from the
positive comovements between expected inflation and a residual term, just like Campbell and Vuolteenaho (2004).
However, Bekaert and Engstrom (2010) claim that this is due to a correlation between expected inflation and
two plausible proxies for rational time-varying risk premia: a measure of economic uncertainty (the uncertainty
among professional forecasters regarding real GDP growth) and a consumption-based measure of risk aversion.
Thus, they offer a rational channel that could potentially explain why the Fed model “works:” their explanation
is that high expected inflation coincides with periods of high risk aversion and/or economic uncertainty, which
conflicts with Campbell and Vuolteenaho (2004) and Cohen et al. (2005). The papers differ on the specifics of
how they measure equity risk premia and on the sample period (Bekaert and Engstrom focus on the post-war
subsample while Campbell and Vuolteenaho and Cohen et al. go back to 1930s). Bekaert and Engstrom (2010)
conclude that “Using this data set alone, it is likely hard to definitively exclude the money illusion story in favor
of our story.”
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illusion and it abstracts from the other channels through which high inflation may depress real

asset prices, such as the possibility that it may adversely affect firms profitability or riskiness.

Consider the pure-dealer version of the model analyzed in Proposition 3 (the main idea

would not change if we consider the nonintermediated market structure of Proposition 4). The

equilibrium equity price is

φst =
β̄π

1− β̄π ε (ι) yt

where ε (ι) ≡ max{ε∗, ε̄+δθ
∫ ε∗
εL
G (ε) dε}. Since ε∗ is decreasing in the growth rate of the money

supply, µ, and the nominal bond yield, ι, is monotonic in µ, we have ε′ (ι) < 0. Let ȳt+1 ≡ γ̄πyt
denote the expected dividend (conditional only on the tree having survived period t). The log

dividend yield is

log ȳt+1 − log φst = log [(1 + r)− γ̄π]− log ε (ι) , (50)

and it is increasing in the nominal yield, ι. Thus, (50) rationalizes the Fed Model, despite the

fact that agents do not suffer from money illusion (they discount payoffs using the risk-free real

rate 1 + r), risk premia do not change (since agents are risk-neutral here), and the expected

growth rate of the dividend, γ̄π, is unaffected by monetary considerations.

9 Liquidity crises and market crashes

In this section we show that the model of Section 7 admits dynamic rational-expectations

equilibria that exhibit episodes that resemble “liquidity crises” and “market crashes,” and we

use the model to explore the scope for welfare enhancing monetary interventions. The basic

idea is to construct equilibria with random belief-driven oscillations in asset prices and standard

measures of market liquidity, such as trade volume, spreads, execution delays borne by investors,

and liquidity provision by dealers (both by matching buyers and sellers as well as by holding

asset inventories on their own account). To this end, we construct stationary sunspot equilibria

in the model with a pure-dealer OTC market and endogenous entry of dealers.26

26Our sunspot equilibria are of course in the spirit of Cass and Shell (1983). Such equilibria are quite common
in monetary models: Lagos and Wright (2003) study dynamic equilibria in the baseline Lagos and Wright (2005)
model and find a rich set of dynamic equilibria, including cycles and sunspot equilibria. Rocheteau and Wright
(2013) find sunspot equilibria in a nonmonetary version of Lagos and Wright (2005) in which consumers use
equity shares on a Lucas tree to pay for consumption goods, e.g., as in Lagos (2010), and in which there is free
entry of producers. In the context of the search-based literature on OTC financial markets, dynamic equilibria
are studied in Lagos and Rocheteau (2009) and Lagos et al. (2011), where equilibrium is unique and converges
monotonically to the unique steady state. Lagos and Rocheteau (2009) find that for some parametrizations, a
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Suppose that in the second subperiod of period t, all agents observe the realization Xt+1 ∈ X
of an extraneous random variable, a “sunspot” that evolves according to a Markov chain, with

σij = Pr (Xt+1 = j|Xt = i) ∈ (0, 1), where
∑

j∈X σij = 1 for each i ∈ X. It can be shown

that in this formulation the marginal investor type in the OTC market is ε∗t =
ptφ̃mt −φ̃st

yt
, where

φ̃kt ≡ EXt+1

[
φkt |Xt

]
, for k = m, s. We explore the existence of equilibria in which allocations

and prices are time invariant functions of the aggregate dividend and the sunspot. That is,

equilibria in which for all t such that Xt+1 = j ∈ X, vt+1 = vj , A
s
Dt+1 = AsDj , and AsIt+1 = AsIj ,

with φst = φsjyt, ptφ
m
t ≡ φot = φojyt, φ

m
t A

m
It = φmt A

m
t = Zjyt, and therefore ε∗t+1 = φ̃oj − φ̃sj ≡ ε∗j ,

where φ̃oj ≡
∑

i∈X σjiφ
o
i and φ̃sj ≡

∑
i∈X σjiφ

s
i . (As usual, dealers never hold money overnight.)

The Euler equations for real balances and equity between any two periods t and t + 1 with

Xt+1 = i are

Zi =
β̄

µ

[
1 + δ (vi) θ

∫ εH

ε∗i

ε− ε∗i
ε∗i + φ̃si

dG(ε)

]
Z̃i (51)

φsi = β̄π

[
φ̃si + max

(
ε∗i , ε̄+ δ (vi) θ

∫ ε∗i

εL

G (ε) dε

)]
, (52)

where Z̃i ≡
∑

j∈X σijZj . A stationary sunspot equilibrium is a vector (vi, Z̃i, φ̃
s
i , A

s
Di, A

s
Ii, ε

∗
i )i∈X

that satisfies

Z̃i =
β̄

µ

∑
j∈X

σij

[
1 + δ (vj) θ

∫ εH

ε∗j

ε− ε∗j
ε∗j + φ̃sj

dG(ε)

]
Z̃j (53)

φ̃si = β̄π
∑
j∈X

σij

[
φ̃sj + max

(
ε∗j , ε̄+ δ (vj) θ

∫ ε∗j

εL

G (ε) dε

)]
, (54)

with

Z̃j =
AsDj + δ (vj)G(ε∗j )A

s
Ij

δ (vj) θ[1−G(ε∗j )]
1

ε∗j+φ̃sj
+ δ (vj) (1− θ)

∫ εH
ε∗j

1
ε+φ̃sj

dG (ε)
(55)

k = β̄ (1− θ) δ (vj)

vj

[
AsIj

∫ ε∗j

εL

(ε∗j − ε)dG (ε) + Z̃j

∫ εH

ε∗j

ε−ε∗j
ε+φ̃sj

dG (ε)

]
(56)

AsIj =

{
(1− π)As if ε̄+ δ (vj) θ

∫ ε∗j
εL
G (ε) dε ≤ ε∗j

As if ε∗j < ε̄+ δ (vj) θ
∫ ε∗j
εL
G (ε) dε

(57)

AsDj = As −AsIj . (58)

version of their model in which the number of dealers is determined endogenously by an entry condition delivers
multiple steady states.
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β = (0.99)1/365 γ̄ = E
(
yt+1

yt

)
= (1.04)1/365

ε ∼ U [0.01, 20] Σ = SD
(
yt+1−yt

yt

)
= 0.12√

365

δ (v) = 1− e−(0.1)v π = (0.9)1/365

k = 0.1 θ = 0.5

yt+1 = µ̄ext+1yt µ = (1.03)1/365

xt+1 ∼ N
(
−Σ2/2,Σ2

)
σ00 = (0.996)1/365; σ11 ≈ 1

Table 1: Parametrization for stationary sunspot equilibrium

Conditions (53) and (54) are obtained from (51) and (52) by multiplying the latter through by

σji, summing over all i ∈ X, and relabeling the subindices.27 For any t and t+ 1, suppose that

Xt = i and Xt+1 = j, then the equilibrium growth rates of asset prices are

φst+1

φst
=
φsj
φsi
γt+1,

φ̄st+1

φ̄st
=
φ̄sj

φ̄si
γt+1,

φmt
φmt+1

=
Zi
Zj

µ

γt+1
, and

pt+1

pt
=
Ziφ̄

s
j

Zjφ̄si
µ.

That is, asset prices follow the dynamic paths implied by the growth rates of the dividend and

the money supply, but the paths themselves are shifted by sunspots.

Although the economy is admittedly stylized, we nonetheless calibrate the critical param-

eters in order to explore the ability of the theory to generate episodes that resemble liquidity

crises for reasonable parametrizations. We think of a model period as being a day. The discount

factor, β, is chosen so that the annual real risk-free rate equals 1%. The dividend growth rate

is independently lognormally distributed over time, with mean 1.04 and standard deviation

0.12 (per annum), e.g., as in Lettau and Ludvigson (2005). We choose π so that a tree has a

90% chance of remaining productive each year. The dealer’s bargaining power is set to 1/2.

When the measure of active dealers is v, the probability that an investor contacts a dealer

in the OTC market is δ (v) = 1 − e−(0.1)v. The entry cost for dealers is 1% of the average

valuation of the aggregate dividend, i.e., k = 0.1. The growth rate of the money supply is 3%

per year. Finally, we let X = {0, 1}, and identify i = 0 with “normal times” and j = 1 with the

“liquidity-crisis state.” The sunspot is a rare event: both σ00 and σ11 are chosen very close to

1. The parametrization is summarized in Table 1.

Table 2 reports the key equilibrium variables during normal times and in the liquidity-crisis

state. Figure 3 displays a typical equilibrium path of our daily model simulated for 100 years.

27It is convenient to define sunspot equilibrium in terms of the conditional expectations of the equity prices,
(Z̃i, φ̃

s
i )i∈X, rather than the realized equity prices, (Zi, φ

s
i )i∈X, but given the former, the latter are immediate

from (51) and (52).
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φs0/φ
s
1 δ (v0) δ (v1) Z0/Z1 ε∗0/ε

∗
1 AsD0 AsD1

1.17 0.87 0.04 12.9 2.90 1 0

Table 2: Stationary sunspot equilibrium

The market starts in the normal state, and the sunspot switches to the liquidity-crisis state in

the first day of year 50. On that day the stock market falls by 17%, as illustrated by the top

left panel. (The lighter path shown in the top left, bottom middle, and bottom right panels

is the path the variable would have followed if the sunspot had not switched.) On the same

day, dealers withdraw from market making and this causes the daily trading probability for

an investor to fall from 90% to 4%, as illustrated by the top middle panel. The right panel

in the top row shows that dealer’s also stop supplying liquidity by carrying assets overnight,

which exacerbates the misallocation of the asset. In the bottom row, the left panel shows that

the average real spread per dollar traded, S̄t, increases drastically, and the middle panel shows

that trade volume collapses abruptly when the crisis hits. The right panel in the bottom row

shows the behavior of real balances. In sum, Figure 3 shows time series with the hallmarks of

a liquidity crisis: a sharp sudden decline in marketmaking and trade volume accompanied by

a sharp sudden increase in trading delays and spreads, at the same time that there is a sharp

sudden crash in asset prices. In layman words: liquidity dries up and the bubble bursts.

The rationale behind the sunspot equilibrium goes as follows. Dealers withdraw from market

making because they expect low profit from the intermediation business. This makes trading

more difficult for investors (trading delays increase), so real balances, which investors use as

means of payment in financial transactions, fall. As a result, investors with high asset valuations

cannot afford to buy as much equity from low valuation investors. This causes the equity price

to crash, and in turn, lower equity prices, lower trading activity, and lower real balances all

validate the dealer’s decision to withdraw from markets. The self-referential nature of market

liquidity is critical, both in terms of the ability of investors to find counterparties for trade, as

well as the endogenous value of the means of payment (in this case fiat money).

10 Related literature

The model builds on two strands of literature: the Search Theory of Money, and search-based

models of financial trade in OTC markets. Specifically, we embed an OTC financial trading

47



arrangement similar to Duffie et al. (2005) into a Lagos and Wright (2005) economy.

In the standard formulations of the Lagos-Wright framework, money (and sometimes other

assets) are used as payment instruments to purchase consumption goods in bilateral markets

mediated by search. We instead posit that money is used as a medium of exchange in OTC

markets for financial assets. In the standard monetary model, money and other liquid assets

help to allocate goods from producers to consumers, while in our current formulation, money

helps to allocate financial assets among traders with heterogeneous valuations. This shift in

the nature of the gains from trade offers a different perspective that delivers novel insights on

the interaction between monetary policy and financial markets.

As a model of financial trade, the main strength of Duffie et al. (2005) is perhaps its

realistic OTC market structure consisting of an interdealer market and bilateral negotiated

trades between investors, and between investors and dealers. In Duffie et al. (2005), agents

who wish to buy assets pay sellers with linear-utility transfers. In addition, utility transfers

from buyers to sellers are unconstrained, so buyers effectively face no budget constraints in

financial transactions. Our formulation keeps the appealing market structure of Duffie et al.

(2005) but improves upon its stylized model of financial transactions by considering traders who

face standard budget constraints and use fiat money to purchase assets. These modifications

make the standard OTC formulation amenable to general equilibrium analysis, and deliver a

natural transmission mechanism through which monetary policy influences financial markets.

Our work is related to previous studies, e.g., Geromichalos et al. (2007), Jacquet and Tan

(2010), Lagos and Rocheteau (2008), Lagos (2010a, 2010b, 2011), Lester et al. (2012), Nosal and

Rocheteau (2013), that introduce a real asset that can (at least to some degree) be used along

with money as a medium of exchange for consumption goods in variants of Lagos and Wright

(2005). These papers identify the liquidity value of the asset with its usefulness in exchange, and

find that when the asset is valuable as a medium of exchange, this manifests itself as a “liquidity

premium” that makes the real asset price higher than the expected present discounted value

of its financial dividend. High anticipated inflation reduces real money balances; this tightens

bilateral trading constraints, which in turn increases the liquidity value and the real price of the

asset. In contrast, we find that real asset prices are decreasing in the rate of anticipated inflation.

There are some models that also build on Lagos and Wright (2005) where agents can use a real

asset as collateral to borrow money that they subsequently use to purchase consumption goods.

In those models, anticipated inflation reduces the demand for real balances which can in turn
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reduce the real price of the collateral asset needed to borrow money (see, e.g., He et al., 2012,

and Li and Li, 2012). The difference is that in our setup inflation reduces the real asset price

by constraining the reallocation of the financial asset from investors with low valuations to

investors with relatively high valuations.

We share with two recent papers, Geromichalos and Herrenbrueck (2012) and Trejos and

Wright (2012), the interest in bringing models of OTC trade in financial markets within the

realm of modern monetary general equilibrium theory. Trejos and Wright (2012) offer an

in-depth analysis of a model that nests Duffie et al. (2005) and the prototypical “second

generation” monetary search model with divisible goods, indivisible money and unit upper

bound on individual money holdings (e.g., Shi, 1995 or Trejos and Wright, 1995). Trejos and

Wright emphasize the different nature of the gains from trade in both classes of models. In

monetary models agents value consumption goods differently and use assets to buy goods, while

in Duffie et al. (2005) agents trade because they value assets differently, and goods which are

valued the same by all investors are used to pay for asset purchases. In our formulation there

are gains from trading assets, as in Duffie et al. (2005), but agents pay with money, as in

standard monetary models. Another difference with Trejos and Wright (2012) is that rather

than assuming indivisible assets and unit upper bound on individual asset holdings as in Shi

(1995), Trejos and Wright (1995) and Duffie et al. (2005), we work with divisible assets and

unrestricted portfolios, as in Lagos and Wright (2005) and Lagos and Rocheteau (2009).

Geromichalos and Herrenbrueck (2012) is methodologically closer to our work. They extend

Lagos and Wright (2005) by incorporating a real asset that by assumption cannot be used to

purchase goods in the decentralized market (as usual, at the end of every period agents choose

next-period money and asset portfolios in a centralized market). The twist is that at the very

beginning of every period, agents learn whether they will want to buy or sell consumption goods

in the subsequent decentralized market and at that point they have access to a bilateral search

market where they can retrade money and assets. This market allows agents to rebalance their

positions depending on their need for money, e.g., those who will be buyers seek to buy money

and sell assets. So although assets cannot be directly used to purchase consumption goods as

in Geromichalos et al. (2007) or Lagos and Rocheteau (2008), agents can use assets to buy

goods indirectly, i.e., by exchanging them for cash in the additional bilateral trading round at

the beginning of the period. Geromichalos and Herrenbrueck use the model to revisit the link

between asset prices and inflation. Their core results (they have several others) are similar to
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those obtained in models where the asset can be used directly as a medium of exchange for

consumption goods, i.e., the asset carries a liquidity premium and higher inflation increases the

real asset price in the centralized market. There are relevant differences between our work and

Geromichalos and Herrenbrueck (2012). In our setup money allows agents to exploit gains from

trading assets (as in Duffie et al.) rather than consumption goods (as in the money literature),

which is why we instead find that inflation reduces asset prices. Also, we consider an OTC

market with dealers who act as intermediaries, which allows us to study the effect of monetary

policy on bid-ask spreads and dealers’ incentives to supply liquidity services—the dimensions

of financial liquidity that search based theories of OTC markets seek to explain.

The fact that the equilibrium asset price is larger than the expected present discounted value

that any agent assigns to the dividend stream is reminiscent of the literature on speculative

trading that can be traced back to Harrison and Kreps (1978). As in Harrison and Kreps, in

our model speculation arises because traders have heterogeneous asset valuations that change

over time: investors are willing to pay for the asset more than the present discounted value that

they assign to the dividend stream, in anticipation of the capital gain they expect to obtain

when reselling the asset to higher-valuation investors in the future. In terms of differences, in

Harrison and Kreps traders have heterogeneous stubborn beliefs about the stochastic dividend

process, and their motive for trading is that they all believe (at least some of them mistakenly)

that by trading the asset they can profit at the expense of others. In our formulation traders

simply have stochastic heterogeneous valuations for the dividend, as in Duffie et al. (2005). Our

model offers a new angle on the speculative premium embedded in the asset price, by showing

how it depends on the underlying financial market structure and the prevailing monetary policy

that jointly determine the likelihood and profitability of future resale opportunities.

11 Conclusion

We have developed a model in which money is used as a medium of exchange in financial

transactions that take place in over-the-counter markets. In any monetary equilibrium the real

asset price contains a speculative premium that is positively related to the quantity of real

money balances and therefore negatively correlated with anticipated inflation and the long-

term nominal interest rate. As a result, the asset price generically exceeds the expected present

discounted value that any agent assigns to the dividend stream. We have shown that this

simple mechanism rationalizes the positive correlation between the real yield on stocks and the
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nominal yield on Treasury bonds—an empirical observation long regarded anomalous. We have

also used the model to study how monetary considerations and the microstructure where the

asset is traded jointly determine the standard measures of financial liquidity of OTC markets,

such as the size of bid-ask spreads, the volume of trade, and the incentives of dealers to supply

immediacy, both by choosing to participate in the market-making activity, as well as by holding

asset inventories on their own account. We have shown that there exist multiple equilibria as well

as dynamic equilibria that resemble expectation driven “market crashes” or “liquidity crises”

in which market liquidity suddenly dries up: dealers drastically reduce their market-making

activity, trade volume drops, bid-ask spreads widen, and asset prices fall abruptly.

We conclude by mentioning what we think are two promising avenues for future work. First,

given that the model can generate inefficient liquidity crises, it would be interesting to explore

the scope for welfare enhancing monetary policy, both conventional, e.g., by changing inflation

and nominal rates, and unconventional, e.g., by issuing fiat money to purchase assets whose

markets have suddenly become illiquid. Second, the model could be useful to interpret the

behavior of asset prices in OTC markets. Recently Ang et al. (2013) have analyzed a large cross

section of OTC-traded common stocks from 1977 through 2008 and find that equity returns are

increasing in the proportion of non-trading days (i.e., days in which the stock was not traded)

and decreasing in the trade volume of the stock. They interpret these findings through the lens

of asset pricing theories that emphasize differences in investors’ individual valuations (e.g., due

to differences in opinions about the fundamentals) and limits on short sales. Our theory also

has heterogeneous valuations, but in addition, it is explicit about the search and bargaining

frictions that are defining characteristics of OTC markets. It is also consistent with the behavior

of the illiquidity premia in response to variations in the measures of liquidity documented by

Ang et al. (2013): In the stationary monetary equilibrium the expected financial return on the

equity, (φst+1 +yt+1)/φst , is decreasing with δ (see Proposition 7). The theory we have developed

also has sharp implications about how the effect of monetary policy on asset prices depends on

the microstructure of the market. For instance, it predicts that the speculative premium, and

therefore the typical residual mispricing term, should be larger and more responsive to inflation

in markets that are more liquid from an investor standpoint, i.e., markets where investors trade

fast and face narrow spreads.
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A Proofs

Proof of Proposition 1. The choice variable a′tD does not appear in the Planner’s objective

function, so a′tD = 0 at an optimum. Also, (5) must bind for every t at an optimum, so the

planner’s problem is equivalent to

max
{ãtD,ãtI ,atib(i),a′tI}

∞
t=0

E0

∞∑
t=0

βt

[
δ

∫
[εL,εH ]

εa′tI (dε) + (1− α− δ) ε̄atI

+

∫
Bt

∫ ∫
I{i≤b(i)}

[
εiatib(i)

(
εi, εb(i)

)
+ εb(i)atb(i)i

(
εb(i), εi

)]
dG (εi) dG

(
εb(i)

)
di

]
yt

s.t. (2), (3), (6), (7) and δ

∫
[εL,εH ]

a′tI (dε) ≤ vatD + δatI .

Let W ∗ denote the maximum value of this problem. Then clearly, W ∗ ≤ W̄ ∗, where

W̄ ∗ = max
{ãtD,ãtI}∞t=0

E0

[ ∞∑
t=0

βt
[ ∫
Bt

∫ ∫
I{i≤b(i)}max

(
ε, ε′

)
2ãtIdG (ε) dG

(
ε′
)
di

+ εH (vãtD + δãtI) + (1− α− δ) ε̄ãtI
]
πyt

]
+ w,

s.t. (3), where w ≡ [αεB + δεH + (1− α− δ) ε̄] (1− π)As
(
E0
∑∞

t=0 β
tyt
)

and

εB ≡
∫ ∫

max
(
ε, ε′

)
dG (ε) dG

(
ε′
)
.

Rearrange the expression for W̄ ∗ and substitute (3) (at equality) to obtain

W̄ ∗ = max
{ãtI}∞t=0

E0

{ ∞∑
t=0

βt {εHAs + [αεB + δεH + (1− α− δ) ε̄− εH ] ãtI}πyt
}

+ w

= {πεH + (1− π) [αεB + δεH + (1− α− δ) ε̄]}As
(
E0

∞∑
t=0

βtyt

)
.

The allocation ãtD = As/v, ãtI = 0, and atib(i)
(
εi, εb(i)

)
= I{εb(i)<εi}2atI + I{εb(i)=εi}a

o, where

ao ∈ [0, 2atI ], together with the Dirac measure defined in the statement of the proposition,

achieve W̄ ∗ and therefore solve the Planner’s problem.

Proof of Lemma 1. Notice that (8) can be written as

WD
t (at) = φtat +WD

t (0) (59)
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with WD
t (0) given by (14). With (59), (9) is equivalent to

ŴD
t (at) = max

âmt ,â
s
t

[φmt â
m
t + φst â

s
t + ξ(amt + pta

s
t − âmt − ptâst ) + ςmâ

m
t + ςsâ

s
t ] +WD

t (0)

where ξ is a Lagrange multiplier on the budget constraint âmt + ptâ
s
t ≤ amt + pta

s
t , and ςm and

ςs are the multipliers on the nonnegativity constraints âmt ≥ 0 and âst ≥ 0. The corresponding

first-order necessary and sufficient conditions for âmt and âst are

−ξ + φmt + ςm = 0 (60)

−ξpt + φst + ςs = 0 (61)

ξ(amt + pta
s
t − âmt − ptâst ) = 0. (62)

Clearly âmt = âst = 0 is the solution if and only if amt = ast = 0, but more generally the solution

could take one of three forms: (i) ςs = 0 < ςm, (ii) ςs = ςm = 0, or (iii) ςm = 0 < ςs. In

case (i), (60)-(62) imply âmt = 0, âst = ast + 1
pt
amt , and ptφ

m
t < φst . In case (ii), (60)-(62) imply

âmt ∈ [0, amt + pta
s
t ], â

s
t = ast + 1

pt
(amt − âmt ), and φst = ptφ

m
t . In case (iii), (60)-(62) imply

âst = 0, âmt = amt + pta
s
t , and φst < ptφ

m
t . The expressions for âmtd and âstd in Lemma 1 follow

from these three cases. The value function (13) is obtained by substituting the optimal portfolio

(âmtd, â
s
td) into (9).

Proof of Lemma 2. (i) Notice that (11) can be written as

W I
t (at) = φtat +W I

t (0) (63)

where

W I
t (0) = Tt + max

ãt+1∈R2
+

[
βEt

∫
V I
t+1 (at+1, ε) dG (ε)− φtãt+1

]
s.t. at+1 = (ãmt+1, πã

s
t+1 + (1− π)As).

With (13) and (63) the problem of the investor when he makes the ultimatum offer becomes

max
am
ti∗ ,a

s
ti∗ ,a

m
td,a

s
td

[εyta
s
ti∗ + φmt a

m
ti∗ + φsta

s
ti∗ ]

s.t. amti∗ + amtd + pt(a
s
ti∗ + astd) ≤ amti + amtd + pt(a

s
ti + astd)

amtd + pta
s
td ≥ amtd + pta

s
td

amti∗ , a
s
ti∗ , a

m
td, a

s
td ∈ R+.
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The corresponding Lagrangian is

L = (φmt + ςmi − ξ) amti∗ + (εyt + φst + ςsi − ξpt) asti∗
+ (ρ+ ςmd − ξ) amtd + (ρpt + ςsd − ξpt) astd +K,

where K ≡ ξ [amti + amtd + pt(a
s
ti + astd)]− ρ (amtd + pta

s
td), ξ ∈ R+ is the Lagrange multiplier asso-

ciated with the budget constraint, ρ ∈ R+ is the multiplier on the dealer’s individual rationality

constraint, and ςmi , ς
s
i , ς

m
d , ς

s
d ∈ R+ are the multipliers for the nonnegativity constraints on amti∗ ,

asti∗ , a
m
td, a

s
td, respectively. The first-order necessary and sufficient conditions are

φmt + ςmi − ξ = 0 (64)

εyt + φst + ςsi − ξpt = 0 (65)

ρ+ ςmd − ξ = 0 (66)

ρpt + ςsd − ξpt = 0 (67)

and the complementary slackness conditions

ξ {amti + amtd + pt(a
s
ti + astd)− [amti∗ + amtd + pt(a

s
ti∗ + astd)]} = 0 (68)

ρ [amtd + pta
s
td − (amtd + pta

s
td)] = 0 (69)

ςmi a
m
ti∗ = 0 (70)

ςsi a
s
ti∗ = 0 (71)

ςmd a
m
td = 0 (72)

ςsda
s
td = 0. (73)

First, notice that ξ > 0 at an optimum. To see this, assume the contrary, i.e., ξ = 0. Then

(65) implies εyt + φst = −ςsi ≤ 0 which is a contradiction since εyt + φst > 0. If ρ > 0, then (69)

implies

amtd + pta
s
td = amtd + pta

s
td. (74)

If instead ρ = 0, then (66) and (67) imply ςmd = ξ > 0 and ςsd = ξpt > 0, which (using (72)

and (73)) in turn imply amtd = astd = 0. This can only be a solution if amtd + pta
s
td = 0 (since

amtd + pta
s
td ≥ amtd + pta

s
td must hold at an optimum) in which case (74) also holds. Thus, we

conclude that (74) must always hold at an optimum (and with ρ > 0 unless amtd + pta
s
td = 0).

Since ξ > 0, (68) and (74) imply

amti∗ + pta
s
ti∗ = amti + pta

s
ti. (75)
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From (74) it is immediate that if amtd+pta
s
td = 0, then amtd = astd = 0. So suppose amtd+pta

s
td >

0. In this case ςmd and ςsd cannot both be strictly positive. (To see this, assume the contrary,

i.e., that ςmd > 0 and ςsd > 0. Then (72) and (73) imply amtd = astd = 0, and (74) implies

amtd + pta
s
td = 0, a contradiction.) Moreover, conditions (66) and (67) imply ςsd = ςmd pt, so

ςsd = ςmd = 0 must hold at an optimum. Hence when making the ultimatum offer, the investor

is indifferent between offering the dealer any nonnegative pair (amtd, a
s
td) that satisfies (74).

From (75) it is immediate that amti∗ = asti∗ = 0 if amti + pta
s
ti = 0. So suppose amti + pta

s
ti > 0.

In this case ςmi and ςsi cannot both be strictly positive (if they were, then (70) and (71) would

imply amti∗ = asti∗ = 0, and in turn (75) would imply amti + pta
s
ti = 0, a contradiction). There are

three possible cases: (a) ςsi = 0 < ςmi , (b) ςsi = ςmi = 0, or (c) ςmi = 0 < ςsi . In every case, (64)

and (65) imply

εyt + φst + ςsi = ptφ
m
t + ptς

m
i . (76)

In case (a), (70) implies amti∗ = 0, (75) implies asti∗ = amti /pt + asti, and (76) implies that ε must

satisfy ε > ε∗t , where ε∗t is as defined in (15). In case (b), (76) implies that ε must satisfy ε = ε∗t

and the investor is indifferent between making any offer that leaves him with a nonnegative

post-trade portfolio (amti∗ , a
s
ti∗) that satisfies (75). In case (c), (71) implies asti∗ = 0, (75) implies

amti∗ = amti + pta
s
ti, and (76) implies that ε must satisfy ε < ε∗t . The first, second, and third lines

on the right side of the expressions for amti∗ , a
s
ti∗ , a

m
td, and astd in part (i) of the statement of the

lemma correspond cases (a), (b), and (c), respectively.

(ii) With (13) and (63) the problem of the dealer when it is his turn to make the ultimatum

offer is equivalent to

max
amti ,a

s
ti,a

m
td∗ ,a

s
td∗
φ̄t [amtd∗ + pta

s
td∗ ]

s.t. amti + amtd∗ + pt(a
s
ti + astd∗) ≤ amti + amtd + pt(a

s
ti + astd) (77)

φmt a
m
ti + (εyt + φst ) a

s
ti ≥ φmt amti + (εyt + φst ) a

s
ti (78)

amti , a
s
ti, a

m
td∗ , a

s
td∗ ∈ R+.

The corresponding Lagrangian is

L′ = (φ̄t + ςmd − ξ)amtd∗ + (φ̄tpt + ςsd − ξpt)astd∗
+ (ρφmt + ςmi − ξ) amti + [ρ (εyt + φst ) + ςsi − ξpt] asti +K ′,

where K ′ ≡ ξ [amti + amtd + pt (asti + astd)] − ρ [φmt a
m
ti + (εyt + φst ) a

s
ti], ξ ∈ R+ is the Lagrange

multiplier associated with the budget constraint, ρ ∈ R+ is the multiplier on the investor’s
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individual rationality constraint, and ςmi , ς
s
i , ς

m
d , ς

s
d ∈ R+ are the multipliers for the nonnega-

tivity constraints on amti , a
s
ti, a

m
td∗ , a

s
td∗ , respectively. The first-order necessary and sufficient

conditions are

φ̄t + ςmd − ξ = 0 (79)

φ̄tpt + ςsd − ξpt = 0 (80)

ρφmt + ςmi − ξ = 0 (81)

ρ (εyt + φst ) + ςsi − ξpt = 0 (82)

and the complementary slackness conditions

ξ {amti + amtd + pt(a
s
ti + astd)− [amti + amtd∗ + pt(a

s
ti + astd∗)]} = 0 (83)

ρ {φmt amti + (εy + φst ) a
s
ti − [φmt a

m
ti + (εyt + φst ) a

s
ti]} = 0 (84)

ςmi a
m
ti = 0 (85)

ςsi a
s
ti = 0 (86)

ςmd a
m
td∗ = 0 (87)

ςsda
s
td∗ = 0. (88)

First, notice that ξ > 0 at an optimum. To see this, note that if ξ = 0 then (79) implies

φ̄t + ςmd = 0 which is a contradiction since the left side is strictly positive (φ̄t > 0 and ςmd ≥ 0

in a monetary equilibrium). Hence, at an optimum,

amti + amtd∗ + pt(a
s
ti + astd∗) = amti + amtd + pt(a

s
ti + astd). (89)

Second, observe that conditions (79) and (80), imply ptς
m
d = ςsd , so ςmd and ςsd have the same

sign, i.e., either both are positive or both are zero.

If ρ = 0, then (81) and (82) imply ςmi = ξ > 0 and ςsi = ξpt > 0, which (using (85) and (86))

in turn imply amti = asti = 0. From the buyer’s individual rationality constraint (78) it follows

that this can be a solution only if φmt a
m
ti +(εyt + φst ) a

s
ti = 0, or equivalently only if amti = asti = 0.

To obtain (amtd∗ , a
s
td∗), consider two cases: (a) ςmd = ςsd = 0, in which case (amtd∗ , a

s
td∗) need only

satisfy amtd∗ + pta
s
td∗ = amtd + pta

s
td, or (b) ςmd > 0 and ςsd > 0, in which case amtd∗ = astd∗ = 0,

which according to (77), is only possible if amtd = astd = 0. It is easy to see that the solution

for case (a) can be obtained from the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the
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statement of the lemma simply by setting amti = asti = 0, and the solution for case (b) can be

obtained similarly, by setting amti = asti = amtd = astd = 0.

If ρ > 0, then (84) implies

φmt a
m
ti + (εyt + φst ) a

s
ti = φmt a

m
ti + (εy + φst ) a

s
ti. (90)

There are eight possible configurations of to be considered: [Configuration 1] ςsi = ςmd = ςsd = 0 <

ςmi . In this case (85) implies amti = 0. Conditions (79)-(82) imply ςmi = (ε− ε∗t ) φ̄tyt/ (εyt + φst ),

and therefore ε∗t < ε. Then from (89) and (90) it follows that

asti = asti +

(
ε∗t yt + φst
εyt + φst

)
1

pt
amti

and (amtd∗ , a
s
td∗) is any nonnegative pair that satisfies

amtd∗ + pta
s
td∗ = amtd + pta

s
td +

(ε− ε∗t ) yt
εyt + φst

amti .

[Configuration 2] ςmi = ςsi = ςmd = ςsd = 0. In this case conditions (79)-(82) imply ε = ε∗t , and

(89) and (90) yield

amti + pta
s
ti = amti + pta

s
ti (91)

amtd∗ + pta
s
td∗ = amtd + pta

s
td. (92)

Hence the dealer is indifferent between making any offer (amti , a
s
ti, a

m
td∗ , a

s
td∗) such that (amti , a

s
ti) ∈

R+ satisfies (91), and (amtd∗ , a
s
td∗) ∈ R+ satisfies (92). [Configuration 3] ςmi = ςmd = ςsd = 0 < ςsi .

In this case condition (86) implies asti = 0. Conditions (81) and (82) imply ςsi = (ε∗t − ε) ytρ,

and therefore ε < ε∗t . Then from (89) and (90) it follows that

amti = amti +
εyt + φst
ε∗t yt + φst

pta
s
ti

and (amtd∗ , a
s
td∗) is any nonnegative pair that satisfies

amtd∗ + pta
s
td∗ = amtd + pta

s
td +

(ε∗t − ε) yt
ε∗t yt + φst

pta
s
ti.

[Configuration 4] ςmd = ςsd = 0, 0 < ςmi and 0 < ςsi . In this case conditions (85) and (86) imply

amti = asti = 0, which according to (90), is only possible if amti = asti = 0. Then (amtd∗ , a
s
td∗) is any

nonnegative pair that satisfies (92). [Configuration 5] ςsi = 0 < ςmi , 0 < ςmd and 0 < ςsd . In this
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case conditions (85), (87) and (88) imply amti = amtd∗ = astd∗ = 0. Conditions (81) and (82) imply

ε∗t < ε. Then from (89) and (90) it follows that the following condition must hold:

astd +
1

pt
amtd = −

[
(ε− ε∗t ) yt

(ε− ε∗t ) yt + ptφmt

]
1

pt
amti .

The term on the left side of the equality is nonnegative and the term on the right side of the

equality is nonpositive (since ε∗t < ε), so this condition can hold only if amti = amtd = astd = 0.

Therefore (89) implies asti = asti. [Configuration 6] ςmi = ςsi = 0, 0 < ςmd and 0 < ςsd . In this case

conditions (87) and (88) imply amtd∗ = astd∗ = 0. Conditions (81) and (82) imply ε = ε∗t , and in

turn conditions (89) and (90) imply amtd + pta
s
td = 0, or equivalently, amtd = astd = 0 must hold,

and (amti , a
s
ti) is any nonnegative pair that satisfies (91). [Configuration 7] ςmi = 0 < ςsi , 0 < ςsd

and 0 < ςsd . In this case conditions (86)-(88) imply asti = amtd∗ = astd∗ = 0. Conditions (81) and

(82) imply ε < ε∗t . Then from (89) and (90) it follows that the following condition must hold:

φmt (amtd + pta
s
td) = − (ε∗t − ε) ytasti.

The term on the left side of the equality is nonnegative and the term on the right side of the

equality is nonpositive (since ε < ε∗t ), so this condition can hold only if φmt (amtd + pta
s
td) = asti =

0. Therefore (90) implies amti = amti . [Configuration 8] 0 < ςmi , 0 < ςsi , 0 < ςsd and 0 < ςsd . In

this case conditions (85)-(88) imply amti = asti = amtd∗ = astd∗ = 0, which according to (89) is only

possible, and the only possible solution if amti = asti = amtd = astd = 0. To conclude, notice that

the solutions for Configurations 1, 2, and 3, correspond to the first, second, and third lines of

the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the statement of the lemma. Similarly,

the solution for Configuration 5 corresponds to the first line of the expressions for amti , a
s
ti, a

m
td∗ ,

and astd∗ in part (ii) of the statement of the lemma, with amti = amtd = astd = 0. The solution

for Configuration 6 corresponds to the second line of the expressions for amti , a
s
ti, a

m
td∗ , and astd∗

in part (ii) of the statement of the lemma, with amtd = astd = 0. The solution for Configuration

7 corresponds to the third line of the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in part (ii) of the

statement of the lemma, with φmt (amtd + pta
s
td) = asti = 0. Finally, it is easy to see that the

solution for Configuration 4 can be obtained from the expressions for amti , a
s
ti, a

m
td∗ , and astd∗ in

part (ii) of the statement of the lemma simply by setting amti = asti = 0, and the solution for

case Configuration 8 can be obtained similarly, by setting amti = asti = amtd = astd = 0.

Proof of Lemma 3. With (63) investor i’s problem when choosing his take-it-or-leave it offer
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to investor j reduces to

max
am
ti∗ ,a

s
ti∗ ,a

m
tj ,a

s
tj

[(εiyt + φst ) a
s
ti∗ + φmt a

m
ti∗ ]

s.t. amti∗ + amtj ≤ amti + amtj

asti∗ + astj ≤ asti + astj

εjyta
s
tj + φmt a

m
tj + φsta

s
tj ≥ εjytastj + φmt a

m
tj + φsta

s
tj

amti∗ , a
s
ti∗ , a

m
tj , a

s
tj ∈ R+.

If φmt = 0, then asti∗ = asti and astj = astj (the bargaining outcome is no trade between investors

i and j) so suppose φmt > 0 for the rest of the proof. The Lagrangian corresponding to investor

i’s problem is

L = (φmt + ςmi − ξm) amti∗ + (εiyt + φst + ςsi − ξs) asti∗
+
(
ρφmt + ςmj − ξm

)
amtj +

[
ρ (εjyt + φst ) + ςsj − ξs

]
astj +K ′′,

where K ′′ ≡ ξm(amti +amtj ) + ξs(asti +astj)− ρ(εjyta
s
tj +φmt a

m
tj +φsta

s
tj), ξ

m ∈ R+ is the multiplier

associated with the bilateral constraint on money holdings, ξs ∈ R+ is the multiplier associated

with the bilateral constraint on equity holdings, ρ ∈ R+ is the multiplier on investor j’s indi-

vidual rationality constraint, and ςmi , ς
s
i , ς

m
j , ς

s
j ∈ R+ are the multipliers for the nonnegativity

constraints on amti∗ , a
s
ti∗ , a

m
tj , a

s
tj , respectively. The first-order necessary and sufficient conditions

are

φmt + ςmi − ξm = 0 (93)

εiyt + φst + ςsi − ξs = 0 (94)

ρφmt + ςmj − ξm = 0 (95)

ρ (εjyt + φst ) + ςsj − ξs = 0 (96)
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and the complementary slackness conditions

ξm(amti + amtj − amti∗ − amtj ) = 0 (97)

ξs(asti + astj − asti∗ − astj) = 0 (98)

ρ(εjyta
s
tj + φmt a

m
tj + φsta

s
tj − εjytastj − φmt amtj − φstastj) = 0 (99)

ςmi a
m
ti∗ = 0 (100)

ςsi a
s
ti∗ = 0 (101)

ςmj a
m
tj = 0 (102)

ςsj a
s
tj = 0. (103)

If ξm = 0, (93) implies 0 < φmt = −ςmi ≤ 0, a contradiction. If ξs = 0, (94) implies

0 < εiyt + φst = −ςsi ≤ 0, another contradiction. Hence ξm > 0 and ξs > 0, so (97) and (98)

imply

amti∗ + amtj = amti + amtj (104)

asti∗ + astj = asti + astj . (105)

If ρ = 0, (95) and (96) imply ςmj = ξm > 0 and ςsj = ξs > 0, and (102) and (103) imply

amtj = astj = 0. From investor’s j individual rationality constraint, this can only be a solution

if amtj = astj = 0, and if this is the case (97) and (98) imply (amti∗ , a
s
ti∗) = (amti , a

s
ti). Hereafter

suppose ρ > 0 which using (99) implies

φmt a
m
tj + (εjyt + φst )a

s
tj = φmt a

m
tj + (εjyt + φst )a

s
tj . (106)

If ςmi > 0 and ςmj > 0, (100) and (102) imply amti∗ = amtj = 0 which by (104), is only possible

if amti = amtj = 0. But then (106) implies astj = astj , and (105) implies asti∗ = asti. Similarly, if

ςsi > 0 and ςsj > 0, (101) and (103) imply asti∗ = astj = 0 which by (105), is only possible if

asti = astj = 0. But then (106) implies amtj = amtj , and (104) implies amti∗ = amti . If ςmi > 0 and

ςsi > 0, then (100) and (101) imply amti∗ = asti∗ = 0, and according to (104), (105) and (106), this

is only possible if amti = asti = 0. Conditions (104) and (105) in turn imply (amtj , a
s
tj) = (amtj , a

s
tj).

Similarly, if ςmj > 0 and ςsj > 0, then (102) and (103) imply amtj = astj = 0, and according

to (106) this is only possible if amtj = astj = 0. Conditions (104) and (105) in turn imply

(amti∗ , a
s
ti∗) = (amti , a

s
ti). So far we have simply verified that there is no trade between investors i

and j, i.e., (amti∗ , a
s
ti∗) = (amti , a

s
ti) and (amtj , a

s
tj) = (amtj , a

s
tj), if amti = amtj = 0, or asti = astj = 0, or
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amti = asti = 0, or amtj = astj = 0. Thus there are seven binding patterns for (ςmi , ς
s
i , ς

m
j , ς

s
j ) that

remain to be considered.

(i) ςmi = ςsi = ςmj = ςsj = 0. Conditions (93)-(96) imply that this case is only possible if

εi = εj , and conditions (104), (105) and (106), imply that the solution consists of any pair of

post trade portfolios (amti∗ , a
s
ti∗) and (amtj , a

s
tj) that satisfy

amtj = amtj −
εjyt + φst
φmt

(asti − asti∗)

amti∗ = amti +
εjyt + φst
φmt

(asti − asti∗)

astj = asti + astj − asti∗

asti∗ ∈
[
asti −min

(
φmt

εjyt + φst
amtj , a

s
ti

)
, asti + min

(
φmt

εjyt + φst
amti , a

s
tj

)]
.

(ii) ςsi = ςmj = ςsj = 0 < ςmi . Condition (100) implies amti∗ = 0, and from (104) we obtain

amtj = amti + amtj . Then condition (106) yields

astj = astj −
φmt

εjyt + φst
amti

and condition (105) implies

asti∗ = asti +
φmt

εjyt + φst
amti .

Notice that ςsj = 0 requires astj ≥ 0 which is equivalent to

φmt a
m
ti ≤ (εjyt + φst ) a

s
tj .

Conditions (93)-(96) imply ςmi = (εi − εj) yt φmt
εjyt+φst

, so ςmi > 0 requires εj < εi.

(iii) ςmi = ςmj = ςsj = 0 < ςsi . Condition (101) implies asti∗ = 0, and from (105) we obtain

astj = asti + astj . Then condition (106) yields

amtj = amtj −
εjyt + φst
φmt

asti

and condition (104) implies

amti∗ = amti +
εjyt + φst
φmt

asti.

Notice that ςmj = 0 requires amtj ≥ 0 which is equivalent to

(εjyt + φst ) a
s
ti ≤ φmt amtj .

61



Conditions (93)-(96) imply ςsi = (εj − εi) yt, so ςsi > 0 requires εi < εj .

(iv) ςmi = ςsi = ςsj = 0 < ςmj . Condition (102) implies amtj = 0, and from (104) we obtain

amti∗ = amti + amtj . Then (105) and (106) imply

astj = astj +
φmt

εjyt + φst
amtj

asti∗ = asti −
φmt

εjyt + φst
amtj .

Notice that ςsi = 0 requires asti∗ ≥ 0 which is equivalent to

φmt a
m
tj ≤ (εjyt + φst ) a

s
ti.

Conditions (93)-(96) imply ςmj = (εj − εi) yt φmt
εjyt+φst

, so ςmj > 0 requires εi < εj .

(v) ςmi = ςsi = ςmj = 0 < ςsj . Condition (103) implies astj = 0, and from (105) we obtain

asti∗ = asti + astj . Then (104) and (106) imply

amtj = amtj +
εjyt + φst
φmt

astj

amti∗ = amti −
εjyt + φst
φmt

astj .

Notice that ςmi = 0 requires amti∗ ≥ 0 which is equivalent to

(εjyt + φst ) a
s
tj ≤ φmt amti .

Conditions (93)-(96) imply ςsj = (εi − εj) yt, so ςsj > 0 requires εj < εi.

(vi) ςmi , ς
s
j ∈ R++ and ςsi = ςmj = 0. In this case, conditions (100) and (103) give amti∗ =

astj = 0, and (104) and (105) imply amtj = amti + amtj and asti∗ = asti + astj . Condition (106) implies

the following restriction must be satisfied

φmt a
m
ti = (εjyt + φst )a

s
tj .

Conditions (93)-(96) imply ςmi = (ρ− 1)φmt and ςsj = (εi − εj) yt−(ρ− 1) (εjyt + φst ), so ςmi > 0

requires ρ > 1, and ςsj requires εj < εi.

(vii) ςmi = ςsj = 0 and ςsi , ς
m
j ∈ R++. In this case, conditions (101) and (102) give asti∗ =

amtj = 0, and (104) and (105) imply amti∗ = amti + amtj and astj = asti + astj . Condition (106) implies

the following restriction must be satisfied

φmt a
m
tj = (εjyt + φst )a

s
ti.
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Conditions (93)-(96) imply ςmj = (1− ρ)φmt and ςsi = (εj − εi) yt−(1− ρ) (εjyt + φst ), so ςmj > 0

requires ρ ∈ (0, 1), and ςsi > 0 requires εi < εj .

Proof of Lemma 4. (i) With Lemma 1, (10) becomes

V D
t (amtd, a

s
td) = κθ

∫
φ̄t [amtd + pta

s
td − (amtd + pta

s
td)] dHt (ati, ε)

+ κ (1− θ)
∫
φ̄t [amtd∗ + pta

s
td∗ − (amtd + pta

s
td)] dHt (ati, ε)

+ φ̄t (amtd + pta
s
td) +WD

t (0)

where we have used the more compact notation introduced in Lemma 2, i.e., akti∗ ≡ aki∗(ati,atd, ε;ψt),
aktd ≡ akd(ati,atd, ε;ψt), akti ≡ aki (ati,atd, ε;ψt), and aktd∗ ≡ akd∗(ati,atd, ε;ψt), for k = m, s. Use

Corollary 1 to arrive at

V D
t (amtd, a

s
td) = κ (1− θ)

∫
φ̄t

[
I{ε<ε∗t }

(ε∗t − ε) yt
ε∗t yt + φst

pta
s
ti + I{ε∗t≤ε}

(ε− ε∗t ) yt
εyt + φst

amti

]
dHt (ati, ε)

+ φ̄t (amtd + pta
s
td) +WD

t (0)

where I{ε<ε∗t } is an indicator function that takes the value 1 if ε < ε∗t , and 0 otherwise. To

obtain (17), use the fact that dHt (ati, ε) = dF It (ati) dG (ε).

(ii) With (63) and the notation introduced in Lemma 2 and Lemma 3, (12) becomes

V I
t (amti , a

s
ti, εi) = δθ

∫
[φmt (amti∗ − amti ) + (εiyt + φst ) (asti∗ − asti)] dFDt (atd)

+ δ (1− θ)
∫

[φmt (amti − amti ) + (εiyt + φst ) (asti − asti)] dFDt (atd)

+ α

∫
η̃ (εi, εj) [φmt (amti∗ − amti ) + (εiyt + φst ) (asti∗ − asti)] dHt (atj , εj)

+ α

∫
[1− η̃ (εi, εj)] [φmt (amti − amti ) + (εiyt + φst ) (asti − asti)] dHt (atj , εj)

+ φmt a
m
ti + (εiyt + φst ) a

s
ti +W I

t (0) .

Use η̃ (εi, εj) ≡ ηI{εj<εi}+(1− η) I{εi<εj}+(1/2) I{εi=εj} and substitute the bargaining outcomes
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reported in Lemma 2 and Lemma 3 to obtain

V I
t (amti , a

s
ti, εi) = δθI{ε∗t≤εi}

(εi − ε∗t ) yt
ε∗t yt + φst

φmt a
m
ti + δθI{εi<ε∗t } (ε∗t − εi) ytasti

+ αη

∫ ∫
I{εj≤εi}

[
−φmt min

{
pot (εj)a

s
tj , a

m
ti

}
+ (εiyt + φst ) min

{
amti

pot (εj)
, astj

}]
dF It (atj) dG (εj)

+ α (1− η)

∫ ∫
I{εi<εj}

[
φmt min

{
pot (εj)a

s
ti, a

m
tj

}
− (εiyt + φst ) min

{
amtj

pot (εj)
, asti

}]
dF It (atj) dG (εj)

+ φmt a
m
ti + (εiyt + φst ) a

s
ti +W I

t (0) . (107)

From (11), we anticipate that as in Lagos and Wright (2005), the beginning-of-period distri-

bution of assets across investors will be degenerate, i.e., (amt+1j , a
s
t+1j) = (AmIt+1, A

s
It+1) for all

j ∈ I, so (107) can be written as (18).

Proof of Lemma 5. With Lemma 4, the dealer’s problem in the second subperiod of period

t, (14), becomes

WD
t (0) = max

ãt+1∈R2
+

[
(−φmt + βEtφ̄t+1)ãmt+1 + (−φst + βπEtφ̄t+1pt+1)ãst+1

]
+ βEtV D

t+1 (0) . (108)

From (18),∫
V I
t+1

(
amt+1, a

s
t+1, εi

)
dG (εi) = φmt+1a

m
t+1 +

∫ (
εiyt+1 + φst+1

)
ast+1dG (εi) +W I

t+1 (0)

+ δθ

∫
I{ε∗t+1≤εi}

(
εi − ε∗t+1

)
yt+1

ε∗t+1yt+1 + φst+1

φmt+1a
m
t+1dG (εi)

+ δθ

∫
I{εi<ε∗t+1}

(
ε∗t+1 − εi

)
yt+1a

s
t+1dG (εi)

+ αη

∫[
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1

εjyt+1 + φst+1

φmt+1a
m
t+1dG (εi) dG (εj)

+ αη

∫ [
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1A
s
It+1dG (εi) dG (εj)

+ α (1− η)

∫[
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj (εj − εi) yt+1

εjyt+1 + φst+1

φmt+1A
m
It+1dG (εi) dG (εj)

+ α (1− η)

∫ [
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj

(εj − εi) yt+1a
s
t+1dG (εi) dG (εj)
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so the investor’s problem (11) can be written as in (63), with

W I
t (0) = max

ãmt+1∈R+

{
− φmt ãmt+1 + βEt

[(
1 + δθ

∫
I{ε∗t+1≤εi}

(
εi − ε∗t+1

)
yt+1

ε∗t+1yt+1 + φst+1

dG (εi)

+ αη

∫[
φmt+1a

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1

εjyt+1 + φst+1

dG (εi) dG (εj)

)
φmt+1ã

m
t+1

+ αη

∫ [
φmt+1ã

m
t+1

As
It+1

−φst+1

]
1

yt+1

∫
εj

(εi − εj) yt+1dG (εi) dG (εj)A
s
It+1

]}

+ max
ãst+1∈R+

{
− φst ãst+1 + βEt

[(∫ (
εiyt+1 + φst+1

)
dG (εi)

+ δθ

∫
I{εi<ε∗t+1}

(
ε∗t+1 − εi

)
yt+1dG (εi)

+ α (1− η)

∫ [
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj

(εj − εi) yt+1dG (εi) dG (εj)

)
ast+1

+ α (1− η)

∫[
φmt+1A

m
It+1

ast+1
−φst+1

]
1

yt+1

∫ εj (εj − εi) yt+1

εjyt+1 + φst+1

dG (εi) dG (εj)φ
m
t+1A

m
It+1

]}
+ Tt + βEtW I

t+1 (0) , (109)

where ast+1 = πãst+1 + (1− π)As. The first-order necessary and sufficient conditions for op-

timization of (108) are (19) and (20). The first-order necessary and sufficient conditions for

optimization of (109) are (21) and (22).

Proof of Proposition 2. In a stationary equilibrium, the dealer’s Euler equations in Lemma

5 become

µ ≥ β̄, “ = ” if ãmt+1d > 0

φs ≥ β̄π

1− β̄π ε
∗, “ = ” if ãst+1d > 0.

The maintained assumption µ > β̄ implies ãmt+1d = 0. Similarly, in a stationary monetary

equilibrium the investor’s Euler equations in Lemma 5 become

µ = β̄

[
1 + δθ

∫ εH

ε∗

εi − ε∗
ε∗ + φs

dG (εi)

+ αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)

]
(110)
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φs ≥ β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

(ε∗ − εi)dG (εi) + α (1− η)ϕ (εc)

]
where εc ≡ Z/AsI − φs, ϕ (ε) ≡

∫ ε
εL

∫ εj
εL

(εj − εi) dG (εi) dG (εj), and the second condition holds

with “=” if ãst+1i > 0. Together, the dealer’s and the investor’s Euler equations for equity imply

φs =
β̄π

1− β̄π max

{
ε∗, ε̄+ δθ

∫ ε∗

εL

(ε∗ − εi)dG (εi) + α (1− η)ϕ (εc)

}
. (111)

As µ→ β̄, (110) implies

δθ

∫ εH

ε∗

εi − ε∗
ε∗ + φs

dG (εi) + αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)→ 0,

a condition that can only hold if ε∗ → εH and εc → εH . The fact that ε∗ → εH means that

among investors who contact dealers, only those with preference type εH purchase equity. The

fact that εc → εH implies that in bilateral trades between investors, the investor with the higher

valuation purchases all his counterparty’s equity holdings (the investor who wishes to buy is

never constrained by his real money balances as µ→ β̄). Finally, as µ→ β̄,

φs → β̄π

1− β̄π max {εH , ε̄+ δθ(εH − ε̄) + α (1− η)ϕ (εH)} =
β̄π

1− β̄π εH ,

so ãst+1d = As for all t, i.e., only dealers hold equity overnight.

Lemma 6 Consider µ̂ and µ̄ as defined in (24). Then µ̂ < µ̄.

Proof of Lemma 6. Define Υ (ζ) : R→ R by Υ (ζ) ≡ β̄
[
1 + δθ(1− β̄π)ζ

]
. Let ζ̂ ≡ (1−δθ)(ε̂−ε̄)

δθε̂

and ζ̄ ≡ ε̄−εL
β̄πε̄+(1−β̄π)εL

, so that µ̂ = Υ(ζ̂) and µ̄ = Υ(ζ̄). Since Υ is strictly increasing, µ̂ < µ̄ if

and only if ζ̂ < ζ̄. With (25) and the fact that ε̄ ≡
∫ εH
εL

εdG (ε) = εH −
∫ εH
εL

G (ε) dε,

ζ̂ =

∫ εH
ε̂ [1−G (ε)] dε

ε̄+ δθ
∫ ε̂
εL
G (ε) dε

,

so clearly,

ζ̂ <

∫ εH
εL

[1−G (ε)] dε

ε̄
=
ε̄− εL
ε̄

< ζ̄.

Hence µ̂ < µ̄.
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Lemma 7 In a stationary equilibrium, the interdealer market clearing condition ĀsDt + ĀsIt =

AsDt + δAsIt is equivalent to

δθ [1−G(ε∗)]

(
AsI +

Z

ε∗ + φs

)
+ δ (1− θ)

∫ εH

ε∗

[
AsI +

Z

ε+ φs

]
dG (ε) = AsD + δAsI . (112)

Proof of Lemma 7. Use δ = κv in ĀsDt + ĀsIt = AsDt + δAsIt to obtain

θ

∫
{âsd [ād (ati,atd, ε;ψt) ;ψt] + asi∗(ati,atd, ε;ψt)} dFDt (atd) dF

I
t (ati) dG (ε)

+ (1− θ)
∫
{âsd [ād∗ (ati,atd, ε;ψt) ;ψt] + asi (ati,atd, ε;ψt)} dFDt (atd) dF

I
t (ati) dG (ε)

=

∫
astddF

D
t (atd) +

∫
astidF

I
t (ati) +

(1− κ) v

δ

∫
[astd − âsd(atd;ψt)] dFDt (atd) . (113)

Since φst = φsyt < ε∗yt + φsyt = φ̄syt ≡ ptφmt in a stationary equilibrium, Lemma 1 implies

âsd [ād (ati,atd, ε;ψt) ;ψt] = âsd [ād∗ (ati,atd, ε;ψt) ;ψt] = âsd(atd;ψt) = 0. (114)

With (114) and the fact that
∫
astidF

I
t (ati) = AsI and v

∫
astddF

D
t (atd) = AsD, (113) becomes

AsD + δAsI = δθ

∫
asi∗(ati,atd, ε;ψt)dF

D
t (atd) dF

I
t (ati) dG (ε)

+ δ (1− θ)
∫
asi (ati,atd, ε;ψt)dF

D
t (atd) dF

I
t (ati) dG (ε) . (115)

From Lemma 2,

asi∗(ati,atd, ε;ψt) = I{ε∗<ε}
(
asti +

1

pt
amti

)
+ I{ε=ε∗}asi∗

asi (ati,atd, ε;ψt) = I{ε∗<ε}
[
asti +

(
ε∗ + φs

ε+ φs

)
1

pt
amti

]
+ I{ε=ε∗}asi

where asi∗ , a
s
i ∈ [0, asti + amti /pt], so (115) becomes

δθ [1−G(ε∗)]

(
AsI +

1

pt
AmIt

)
+ δ (1− θ)

∫ εH

ε∗

[
AsI +

(
ε∗ + φs

ε+ φs

)
1

pt
AmIt

]
dG (ε) = AsD + δAsI .

Finally, use the fact that in a stationary equilibrium, φmt A
m
It = Zyt and ptφ

m
t = φ̄syt =

(ε∗ + φs) yt, to arrive at the expression in the statement of the lemma.

Proof of Proposition 3. In an equilibrium with no money (or no valued money), there is

no trade in the OTC market. The first-order conditions for a dealer d and an investor i in the
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time-t Walrasian market are

φst ≥ βπEtφst+1, “ = ” if ãst+1d > 0

φst ≥ βπEt
(
ε̄yt+1 + φst+1

)
, “ = ” if ãst+1i > 0.

In a stationary equilibrium, Et(φst+1/φ
s
t ) = γ̄, and βγ̄π < 1 is a maintained assumption, so

no dealer holds equity. The Walrasian market for equity can only clear if φs = β̄π
1−β̄π ε̄. This

establishes parts (i) and (iii) in the statement of the proposition.

Next, we turn to monetary equilibria. With α = 0, in a stationary equilibrium (19)-(22)

become

µ ≥ β̄, “ = ” if ãmt+1d > 0 (116)

φs ≥ β̄πφ̄s, “ = ” if ãst+1d > 0 (117)

1 ≥ β̄

µ

[
1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + φs

]
, “ = ” if ãmt+1i > 0 (118)

φs ≥ β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
, “ = ” if ãst+1i > 0. (119)

(In (116) we have used the fact that φ̄s = ε∗ + φs > φs.) Under our maintained assumption

β̄ < µ, (116) implies ãmt+1d = ZD = 0, so (118) must hold with equality for some investor in a

monetary equilibrium. Thus, in order to find a monetary equilibrium there are three possible

equilibrium configurations to consider depending on the binding patterns of the complementary

slackness conditions (117) and (119). The market-clearing condition, ĀsDt + ĀsIt = AsDt + δAsIt

must hold for all three configurations. Lemma 7 shows that this condition can be written as

(112) and this condition can be rearranged to deliver (31). The rest of the proof proceeds in

three steps.

Step 1: Try to construct a stationary monetary equilibrium with ãst+1d = 0 for all d ∈ D,

and ãst+1i > 0 for some i ∈ I. The equilibrium conditions for this case are (112) together with

φs > β̄πφ̄s (120)

1 =
β̄

µ

[
1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + φs

]
(121)

φs =
β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
(122)

68



and

ãmt+1d = 0 for all d ∈ D (123)

ãmt+1i ≥ 0, with “ > ” for some i ∈ I (124)

ãst+1d = 0 for all d ∈ D (125)

ãst+1i ≥ 0, with “ > ” for some i ∈ I. (126)

Conditions (121) and (122) are to be solved for the two unknowns ε∗ and φs. Substitute (122)

into (121) to obtain

1 =
β̄

µ

1 + δθ

∫ εH
ε∗ [1−G (ε)] dε

ε∗ + β̄π
1−β̄π

[
ε̄+ δθ

∫ ε∗
εL
G (ε) dε

]
 (127)

which is a single equation in ε∗. Define

T (x) ≡
∫ εH
x [1−G (ε)] dε

1
1−β̄πx+ β̄π

1−β̄π T̂ (x)
− µ− β̄

β̄δθ
(128)

with

T̂ (x) ≡ ε̄− x+ δθ

∫ x

εL

G (ε) dε, (129)

and notice that ε∗ solves (127) if and only if it satisfies T (ε∗) = 0. T is a continuous real-valued

function on [εL, εH ], with

T (εL) =
ε̄− εL

εL + β̄π
1−β̄π ε̄

− µ− β̄
β̄δθ

,

T (εH) = −µ− β̄
β̄δθ

< 0,

and

T ′ (x) = −
[1−G(x)]

{
x+ β̄π

1−β̄π

[
ε̄+δθ

∫ x
εL
G(ε)dε

]}
+[
∫ εH
x [1−G(ε)]dε]

{
1+ β̄π

1−β̄π δθG(x)
}

{
x+ β̄π

1−β̄π

[
ε̄+δθ

∫ x
εL
G(ε)dε

]}2 < 0.

Hence if T (εL) > 0, or equivalently, if µ < µ̄ (with µ̄ is as defined in (24)) then there exists

a unique ε∗ ∈ (εL, εH) that satisfies T (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µ̄). Once we know ε∗, φs

is given by (122). Given ε∗ and φs, the values of Z, φ̄s, φmt and pt are obtained using (31)

(with AsI = As and AsD = 0), (28), (29) and (30). To conclude this step, notice that for this

case to be an equilibrium (120) must hold, or equivalently, using (??) and (122), it must be
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that T̂ (ε∗) > 0, where T̂ is the continuous function on [εL, εH ] defined in (129). Notice that

T̂ ′ (x) = − [1− δθG (x)] < 0, and T̂ (εH) = − (1− δθ) (εH − ε̄) < 0 < ε̄− εL = T̂ (εL), so there

exists a unique ε̂ ∈ (εL, εH) such that T̂ (ε̂) = 0. (Since T̂ (ε̄) > 0, and T̂ ′ < 0, it follows that

ε̄ < ε̂.) Then T̂ ′ (x) < 0 implies T̂ (ε∗) ≥ 0 if and only if ε∗ ≤ ε̂, with “=” for ε∗ = ε̂. With

(128), we know that ε∗ < ε̂ if and only if T (ε̂) < 0 = T (ε∗), i.e., if and only if

β̄

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε̂ [1−G (ε)] dε

β̄πε̄+
(
1− β̄π

)
ε̂+ β̄πδθ

∫ ε̂
εL
G (ε) dε

]
< µ.

Since T̂ (ε̂) = (1− δθ) (ε̄− ε̂) + δθ
∫ εH
ε̂ [1−G (ε)] dε = 0, this last condition is equivalent to

µ̂ < µ, where µ̂ is as defined in (24). The allocations and asset prices described in this step

correspond to those in the statement of the proposition for the case with µ ∈ (µ̂, µ̄).

Step 2: Try to construct a stationary monetary equilibrium with ast+1d > 0 for some d ∈ D,

and ast+1i = 0 for all i ∈ I. The equilibrium conditions are (112), (121), (123), (124), together

with

φs = β̄πφ̄s (130)

φs >
β̄π

1− β̄π

[
ε̄+ δθ

∫ ε∗

εL

G (ε) dε

]
, “ = ” if ãst+1i > 0. (131)

ãst+1d ≥ 0, with “ > ” for some d ∈ D (132)

ãst+1i = 0, for all i ∈ I. (133)

The conditions (121) and (130) are to be solved for ε∗ and φs. First use φ̄s = ε∗ + φs in (130)

to obtain

φs =
β̄π

1− β̄π ε
∗. (134)

Substitute (134) in (121) to obtain

1 =
β̄

µ

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε∗ [1−G (ε)] dε

ε∗

]
(135)

which is a single equation in ε∗. Define

R (x) ≡
(
1− β̄π

) ∫ εH
x [1−G (ε)] dε

x
− µ− β̄

β̄δθ
(136)
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and notice that ε∗ solves (135) if and only if it satisfies R (ε∗) = 0. R is a continuous real-valued

function on [εL, εH ], with

R (εL) =

(
1− β̄π

)
(ε̄− εL)

εL
− µ− β̄

β̄δθ

R (εH) = −µ− β̄
β̄δθ

and

R′ (x) = − [1−G (x)]x+
∫ εH
x [1−G (ε)] dε

1
1−β̄πx

2
< 0.

Hence if R (εL) > 0, or equivalently, if

µ < β̄

[
1 +

δθ
(
1− β̄π

)
(ε̄− εL)

εL

]
≡ µo

then there exists a unique ε∗ ∈ (εL, εH) that satisfies R (ε∗) = 0 (and ε∗ ↓ εL as µ ↑ µo).
Having solved for ε∗, φs is obtained from (134). Given ε∗ and φs, the values of Z, φ̄s, φmt and

pt are obtained using (31) (with AsD = As − AsI = πAs), (28), (29) and (30). Notice that for

this case to be an equilibrium (131) must hold, or equivalently, using (134), it must be that

T̂ (ε∗) < 0, which is in turn equivalent to ε̂ < ε∗. With (136), we know that ε̂ < ε∗ if and only

if R (ε∗) = 0 < R (ε̂), i.e., if and only if

µ < β̄

[
1 +

δθ
(
1− β̄π

) ∫ εH
ε̂ [1−G (ε)] dε

ε̂

]
,

which using the fact that T̂ (ε̂) = 0, can be written as µ < µ̂. To summarize, the prices

and allocations constructed in this step constitute a stationary monetary equilibrium provided

µ ∈ (β̄,min (µ̂, µo)). To conclude this step, we show that µ̂ < µ̄ < µo, which together with

the previous step will mean that there is no stationary monetary equilibrium for µ ≥ µ̄ (thus

establishing part (ii) in the statement of the proposition). It is clear that µ̄ < µo, and we know

that µ̂ < µ̄ from Lemma 6. Therefore the allocations and asset prices described in this step

correspond to those in the statement of the proposition for the case with µ ∈ (β̄,min (µ̂, µo)) =

(β̄, µ̂).

Step 3: Try to construct a stationary monetary equilibrium with ãst+1d > 0 for some d ∈ D,

and ãst+1i > 0 for some i ∈ I. The equilibrium conditions are (112), (121), (122), (123), (124),

and (130) with

ãst+1i ≥ 0 and ãst+1d ≥ 0, with “ > ” for some i ∈ I or some d ∈ I.
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Notice that ε∗ and φs are obtained as in Step 2. Now, however, (122) must also hold, which

together with (134) implies that

0 = ε̄− ε∗ + δθ

∫ ε∗

εL

G (ε) dε

or equivalently, (since the right side is just T̂ (ε∗)), that ε∗ = ε̂. In other words, this condition

requires R (ε̂) = T̂ (ε̂), or equivalently, we must have µ = µ̂. As before, the market-clearing

condition (31) is used to obtain Z, while (28), (29), and (30) imply φ̄s, φmt , and pt, respectively.

The allocations and asset prices described in this step correspond to those in the statement of

the proposition for the case with µ = µ̂.

Combined, Steps 1-3 prove part (iv) in the statement of the proposition. Part (v)(a) is

immediate from (122) and (128), and part (v)(b) from (134) and (136).

Corollary 2 The marginal type, ε∗, characterized in Proposition 3 is strictly decreasing in the

rate of inflation, i.e.,∂ε
∗

∂µ < 0 both for µ ∈ (β̄, µ̂), and for µ ∈ (µ̂, µ̄).

Proof of Corollary 2. For µ ∈
(
β̄, µ̂

)
, implicitly differentiate R (ε∗) = 0 (with R given by

(136)), and for µ ∈ (µ̂, µ̄), implicitly differentiate T (ε∗) = 0 (with T given by (128)) to obtain

∂ε∗

∂µ
=


− ε∗

β̄δθ(1−β̄π)[1−G(ε∗)]+µ−β̄ if β̄ < µ < µ̂

− β̄δθ
∫ εH
ε∗ [1−G(ε)]dε{

1+β̄δθ
[
πG(ε∗)
1−β̄π +

1−G(ε∗)
µ−β̄

]}
(µ−β̄)

2 if µ̂ < µ < µ̄.

Clearly, ∂ε∗/∂µ < 0 for µ ∈ (β̄, µ̂), and for µ ∈ (µ̂, µ̄).

Proof of Proposition 4. With δ = 0, in any stationary equilibrium the Euler equations for

a dealer d obtained in Lemma 5 reduce to

µ ≥ β̄, with “ = ” if ãmt+1d > 0

φs ≥ β̄πφs, with “ = ” if ãmt+1d > 0.

The maintained assumptions µ > β̄ and β̄π < 1, and the fact that the equity will be valued

in any equilibrium imply ãmt+1d = ãmt+1d = 0 for all d ∈ D. Since dealers are inactive in any

stationary equilibrium, we focus on investors for the remainder of the proof. In an equilibrium

with no money (or no valued money), there is no trade in the OTC market. The first-order

condition for an investor i in the time-t Walrasian market is

φst ≥ βπEt
(
ε̄yt+1 + φst+1

)
, “ = ” if ãst+1i > 0.
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In a stationary equilibrium the Walrasian market for equity can only clear if φst = β̄π
1−β̄π ε̄yt. This

establishes parts (i) and (iii) in the statement of the proposition. In a stationary monetary

equilibrium the Euler equations for an investor obtained in Lemma 5 reduce to

µ = β̄

[
1 + αη

∫ εH

εc

∫ εH

εj

εi − εj
εj + φs

dG (εi) dG (εj)

]
(137)

φs =
β̄π

1− β̄π

[
ε̄+ α (1− η)

∫ εc

εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj)

]
(138)

where

εc ≡ Z

As
− φs. (139)

Condition (137) can be substituted into (138) to obtain a single equation in the unknown εc,

namely T̄ (εc) = 0, where T̄ : [εL, εH ]→ R is defined by

T̄ (εc) ≡ β̄αη
∫ εH

εc

∫ εH

εj

εi−εj
εj+

β̄π
1−β̄π

[
ε̄+α(1−η)

∫ εc
εL

∫ εj
εL

(εj−εi)dG(εi)dG(εj)
]dG (εi) dG (εj) + β̄ − µ.

Notice that T̄ (εH) = β̄ − µ < 0 and

T̄ (εL) = β̄αη

∫ εH

εL

∫ εH

εj

εi − εj
εj + β̄π

1−β̄π ε̄
dG (εi) dG (εj) + β̄ − µ,

so since T̄ is continuous, a stationary monetary equilibrium exists if µ < µ̃ with µ̃ defined as in

(35). In addition,

T̄ ′ (εc) = −
[
β̄αη

∫ εH

εc

εi−εc
εc+φsdG (εi)G

′ (εc)

+
(β̄α)2πη (1− η)

1− β̄π

∫ εH

εc

∫ εH

εj

(εi−εj)
∫ εc
εL

(εc−ε)dG(ε)G′(εc)

(εj+φs)
2 dG (εi) dG (εj)

]

is negative, so a stationary monetary equilibrium exists if and only if µ < µ̃, and there cannot

be more than one stationary monetary equilibrium. Condition (36) is just (138), condition (38)

is T̄ (εc) = 0, and (37) follows from (139). This establishes parts (ii) and (iv). Part (v) is

immediate from (38).

Proof of Proposition 5. Recall that ∂ε∗/∂µ < 0 (Corollary 2). (i) From (27),

∂φs

∂µ
=

β̄π

1− β̄π
[
I{β̄<µ≤µ̂} + I{µ̂<µ<µ̄}δθG (ε∗)

] ∂ε∗
∂µ

< 0.
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(ii) Condition (28) implies ∂φ̄s/∂µ = ∂ε∗/∂µ+ ∂φs/∂µ < 0. (iii) Differentiate (31) to obtain

∂Z

∂ε∗
= δZ

G′(ε∗)AsI+

[
G′(ε∗)(ε∗+φs)+θ[1−G(ε∗)]

(
1+ ∂φs

∂ε∗

)
+(1−θ) ∂φ

s

∂ε∗
∫ εH
ε∗

(
ε∗+φs
ε+φs

)2
dG(ε)

]
Z

(ε∗+φs)2

AsD+δG(ε∗)AsI
> 0.

(140)

Hence ∂Z/∂µ = (∂Z/∂ε∗)(∂ε∗/∂µ) < 0. From (29), ∂φmt /∂µ = (yt/A
m
t ) ∂Z/∂µ < 0.

Proof of Proposition 6. First, notice that ∂εc/∂µ = 1/T̄ ′ (εc) < 0, where T̄ (·) is the mapping

defined in the proof of Proposition 4. (i) Differentiate (36) to obtain

∂φs

∂µ
=

β̄π

1− β̄πα (1− η)G′ (εc)

∫ εc

εL

(εc − εi) dG (εi)
∂εc

∂µ
< 0.

(ii) From (37), ∂Z/∂µ = (∂εc/∂µ + ∂φs/∂µ)As < 0, and since Z = φmt A
m
t /yt, ∂φ

m
t /∂µ =

(∂Z/∂µ) (yt/A
m
t ) < 0.

Proof of Proposition 7. From condition (32),

∂ε∗

∂ (δθ)
=

µ−β̄
δθ [ε∗ + β̄π (ε̄− ε∗) I{µ̂<µ}]

β̄δθ(1− β̄π) [1−G (ε∗)] + (µ− β̄)
{

1 + β̄π [δθG (ε∗)− 1] I{µ̂<µ}
} > 0. (141)

(i) From (36),

∂φs

∂ (δθ)
=


β̄π

1−β̄π
∂ε∗

∂(δθ) > 0 if β̄ < µ ≤ µ̂
β̄π

1−β̄π

[∫ ε∗
εL
G (ε) dε+ δθG (ε∗) ∂ε∗

∂(δθ)

]
> 0 if µ̂ < µ < µ̄.

(ii) From (28), ∂φ̄s/∂ (δθ) = ∂ε∗/∂ (δθ) + ∂φs/∂ (δθ) > 0. (iii) For µ ∈ (µ̂, µ̄), (31) im-

plies ∂Z/∂δ = (∂Z/∂ε∗) (∂ε∗/∂δ) > 0 (the sign follows from (140) and (141)), and therefore

∂φmt /∂δ = (∂Z/∂δ) (yt/A
m
t ) > 0.

Proof of Proposition 8. Implicit differentiation of T̄ (εc) = 0 implies

∂εc

∂α
=

∫ εH
εc

∫ εH
εj

η(1−β̄π)(εi−εj)[(1−β̄π)εj+β̄πε̄]
{(1−β̄π)εj+β̄π[ε̄+α(1−η)ϕ(εc)]}2 dG(εi)dG(εj)

∫ εH
εc

αη(1−β̄π)(εi−εj)

(1−β̄π)εc+β̄π[ε̄+α(1−η)ϕ(εc)]
dG(εi)G′(εc)+

∫ εH
εc

∫ εH
εj

β̄πα2η(1−η)(1−β̄π)(εi−εj)ϕ′(εc)

{(1−β̄π)εj+β̄π[ε̄+α(1−η)ϕ(εc)]}2 dG(εi)dG(εj)
> 0.

(i) Differentiate (36) to arrive at

∂φs

∂α
=
β̄π (1− η)

1− β̄π

[
ϕ (εc) + α

∫ εc

εL

(εc − εi) dG (εi) dG (εc)
∂εc

∂α

]
> 0.
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(ii) From (37),
∂Z

∂α
=

(
∂εc

∂α
+
∂φs

∂α

)
As > 0,

and since Z = φmt A
m
t /yt, it follows that ∂φmt /∂α > 0.

Proof of Proposition 9. (i) The result is immediate from the expression for AsD in Proposition

3. (ii) From (24) and (25),

∂µ̂

∂ (δθ)
= β̄

(
1− β̄π

){ (1− δθ) ε̄
[1− δθG (ε̂)] ε̂2

∫ ε̂

εL

G (ε) dε− ε̂− ε̄
ε̂

}
.

Notice that ∂µ̂/∂ (δθ) approaches a positive value as δθ → 0, and a negative value as δθ → 1.

Also, µ̂→ β̄ both when δθ → 0, and when δθ → 1. Hence µ > β̄ = limδθ→0 µ̂ = limδθ→1 µ̂ for a

range of values of δθ close to 0 and a range of values of δθ close to 1. For those ranges of values

of δθ, AsD = 0. In between those ranges there must exist values of δθ such that µ < µ̂ which

implies AsD > 0.

Proof of Proposition 10. (i) Differentiate (39) to get

∂V
∂µ

= 2δG′ (ε∗) (As − πÃsD)
∂ε∗

∂µ
< 0,

where the inequality follows from Corollary 2. (ii) From (39),

∂V
∂θ

= 2δG′ (ε∗) (As − πÃsD)
∂ε∗

∂θ
∂V
∂δ

= 2

[
G (ε∗) + δG′ (ε∗)

∂ε∗

∂δ

]
(As − πÃsD)

and both are positive since ∂ε∗/∂ (δθ) > 0 (see (141)).

Proof of Proposition 10. Rewrite Ṽ as

Ṽ = αAs
∫ εc

εL

{η [1−G (εi)] + (1− η)G (εi)} dG (εi)

+ αAs
∫ εH

εc
{η [1−G (εi)] + (1− η)G (εi)}

εc + φs

εi + φs
dG (εi) .

Differentiate to obtain

∂Ṽ
∂εc

= αAs
∫ εH

εc
{η [1−G (εi)] + (1− η)G (εi)}

∂

∂εc

[
εc + φs

εi + φs

]
dG (εi) ,
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where
∂

∂εc

[
εc + φs

εi + φs

]
=
εi + φs + (εi − εc) ∂φ

s

∂εc

(εi + φs)2 As > 0 for εi > εc.

Hence, ∂Ṽ/∂εc > 0. Thus ∂Ṽ/∂µ = (∂Ṽ/∂εc) (∂εc/∂µ) < 0, since ∂εc/∂µ < 0 (see proof

of Proposition 6), which establishes (i). For part (ii), simply notice that ∂Ṽ/∂α = Ṽ/α +

(∂Ṽ/∂εc) (∂εc/∂α) > 0.

Proof of Proposition 12. (i) For β̄ < µ ≤ µ̂, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
(∂ε∗/∂µ) < 0, and for

µ̂ < µ < µ̄, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
δθG (ε∗) (∂ε∗/∂µ) < 0. (ii) For β̄ < µ ≤ µ̂, ∂P/∂ (δθ) =[

β̄π/(1− β̄π)
]

(∂ε∗/∂ (δθ)) > 0, and for µ̂ < µ < µ̄, ∂P/∂µ =
[
β̄π/(1− β̄π)

]
{δθG (ε∗) [∂ε∗/∂ (δθ)]+∫ ε∗

εL
G (ε) dε} > 0.

Proof of Proposition 13. (i) ∂P̃/∂µ =
[
β̄π/(1− β̄π)

]
α (1− η)ϕ′ (εc) (∂εc/∂µ) < 0. (ii)

∂P̃/∂α =
[
β̄π/(1− β̄π)

]
(1− η) {αϕ′ (εc) (∂εc/∂α) + ϕ (εc)} > 0.

Proof of Proposition 14. The choice variable a′tD does not appear in the Planner’s objective

function, so a′tD = 0 at an optimum. Since (42) must bind for every t at an optimum, the

planner’s problem is equivalent to

W ∗∗ = max
{vt,ãtD,ãtI ,a′tI}∞t=0

E0

∞∑
t=0

βt

{
δ (vt)

∫
[εL,εH ]

εa′tI (dε) + [1− δ (vt)] ε̄atI − kvt+1

}
yt

subject to (6), (7), (40) and (41). Clearly,
∫

[εL,εH ] εa
′
tI (dε) ≤ εH and (41) must bind at an

optimum, so W ∗∗ ≤ W̄ ∗∗, where

W̄ ∗∗ = max
{vt,ãtD,ãtI}∞t=0

E0

∞∑
t=0

βt {[vtatD + δ (vt) atI ] εH + [1− δ (vt)] ε̄atI − kvt+1} yt

= max
{vt,ãtI}∞t=0

E0

∞∑
t=0

βt {[πεH + (1− π) {δ (vt) εH + [1− δ (vt)] ε̄}]As

− [1− δ (vt)] (εH − ε̄)πãtI − kvt+1} yt

= max
{vt}∞t=0

E0

∞∑
t=0

βt {[πεH + (1− π) {δ (vt) εH + [1− δ (vt)] ε̄}]As − kvt+1} yt

= E0

∞∑
t=0

βt
{

[πεH + (1− π) {δ (v∗t ) εH + [1− δ (v∗t )] ε̄}]As − kv∗t+1

}
yt,

where the maximization in the first line is subject to (6), (7) and (40) (which must bind

at an optimum), the second line has been obtained by substituting these constraints into the
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objective function, and {v∗t } in the last line denotes the sequence of vt characterized by (43). The

allocation in the statement of the proposition achieves W̄ ∗∗ and therefore solves the Planner’s

problem.

Lemma 8 In any equilibrium, the free-entry condition (44) can be written as (45).

Proof of Lemma 8. With (14), the left side of condition (44) can be written as

max
(amt+1,a

s
t+1)∈R2

+

[
βEtV D

t+1

(
amt+1, πa

s
t+1

)
−
(
φmt a

m
t+1 + φsta

s
t+1

)]
− kt.

And with (17), this last expression becomes

max
(amt+1,a

s
t+1)∈R2

+

[(
βEtφ̄t+1 − φmt

)
amt+1 +

(
βπEtφ̄t+1pt+1 − φst

)
ast+1

]
+ βEtV D

t+1 (0)− kt, (142)

where

V D
t+1 (0) ≡ κ (vt+1) (1− θ) φ̄t+1

[
AmIt+1

∫ εH

ε∗t+1

(ε−ε∗t+1)yt+1

εyt+1+φst+1
dG (ε) + pt+1A

s
It+1

∫ ε∗t+1

εL

(ε∗t+1−ε)yt+1

ε∗t+1yt+1+φst+1
dG (ε)

]
+ max

{
WD
t+1 (0)− kt, 0

}
is as in Lemma 4, except for the last term, which reflects the fact that the dealer has to bear

cost k in order to participate in the OTC market of the following period. In equilibrium, the

dealer optimization (conditions (19) and (20)) implies

max
(amt+1,a

s
t+1)∈R2

+

[(
βEtφ̄t+1 − φmt

)
amt+1 +

(
βπEtφ̄t+1pt+1 − φst

)
ast+1

]
= 0.

Also, (44) implies max
{
WD
t+1 (0)− kt, 0

}
= 0. Hence (142) reduces to Φt+1 − kt, with Φt+1 as

defined below (45).

Proof of Proposition 15. Consider a stationary equilibrium with free entry (for the model

with α = 0). As µ→ β̄, (32) implies∫ εH
ε∗ [1−G (ε)] dε

ε∗ + βπ
[
ε̄− ε∗ + δ (v) θ

∫ ε∗
εL
G (ε) dε

]
I{µ̂<µ}

→ 0

which in turn implies ε∗ → εH . The dealer’s and the investor’s Euler equations for equity in

Lemma 5 imply

φs =
β̄π

1− β̄π max

{
ε∗, ε̄+ δ (v) θ

∫ ε∗

εL

(ε∗ − ε)dG (ε)

}
,
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and as ε∗ → εH , max
{
ε∗, ε̄+ δ (v) θ

∫ ε∗
εL

(ε∗ − ε)dG (ε)
}
→ max {εH , ε̄+ δ (v) θ(εH − ε̄)} = εH ,

so ÃsD → As, i.e., only dealers hold equity overnight. Thus, from (48), Φ̄− k → Π (v), where

Π (v) ≡ β̄κ (v) (1− θ) (εH − ε̄) (1− π)As − k.

Notice that

lim
v→∞

Π (v) = −k < 0 < β̄ (1− θ) (εH − ε̄) (1− π)As − k = Π (0)

and Π′ (v) = β̄κ′ (v) (1− θ) (εH − ε̄) (1− π)As < 0, so there exists a unique v ∈ (0,∞) that

satisfies Π (v) = 0. To conclude, we only need to show that under the hypothesis of the

proposition, Π (v) = 0 is equivalent to (43). Notice that δ′′ (v) < 0 implies κ (v) = δ (v) /v ≤
δ′ (0) for any v ≥ 0. In particular, for v = 0 this implies 1 ≤ δ′ (0). Hence

0 < β̄ (1− θ) (εH − ε̄) (1− π)As − k ≤ β̄δ′ (0) (εH − ε̄) (1− π)As − k

which means that v > 0 in the Planner’s solution. Then (43) must hold with equality and the

optimal v satisfies

β̄δ′ (v) (εH − ε̄) (1− π)As − k = 0. (143)

Finally, notice that δ′ (v) = κ (v)+κ′ (v) v, so if 1−θ = 1− −κ′(v)v
κ(v) = δ′(v)

κ(v) then (143) is identical

to Π (v) = 0.

B Supplementary material

B.1 Dynamics

In this section we consider dynamic equilibria, i.e., equilibria in which asset holdings {AsDt, AsIt}
may vary over time and real asset prices are linear, but possibly time-varying functions of the

aggregate dividend. Specifically, the real balances held by investors are given by φmt A
m
It = Ztyt

(dealers do not hold money overnight in any equilibrium), the real ex-dividend equity price

is fst (yt) = φstyt, and the real cum-dividend equity price is f̄st (yt) ≡ ptφ
m
t = φ̄styt. Hence,

ε∗t ≡ f̄st (yt)−fst (yt)
yt

= φ̄st − φst may now also vary over time.
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B.1.1 Pure-dealer OTC market

A dynamic equilibrium for the pure-dealer OTC market is a bounded sequence {Zt, AsDt, AsIt, φst , ε∗t }∞t=0

such that {φst , ε∗t }∞t=0 satisfies the following system of difference equations

Zt =
β̄

µ

[
1 + δθ

∫ εH

ε∗t+1

ε− ε∗t+1

ε∗t+1 + φst+1

dG (ε)

]
Zt+1

φst = β̄π

[
φst+1 + max

{
ε∗t+1, ε̄+ δθ

∫ ε∗t+1

εL

G (ε) dε

}]

and {Zt, AsDt, AsIt}∞t=0 is given by

Zt =
AsDt + δG(ε∗t )A

s
It

δθ [1−G(ε∗t )]
1

ε∗t+φst
+ δ (1− θ)

∫ εH
ε∗t

1
ε+φst

dG (ε)

AsDt = I{ε̂≤ε∗t }πA
s

AsIt =
[
I{ε∗t<ε̂} + I{ε̂≤ε∗t } (1− π)

]
As.

B.1.2 Non-intermediated OTC market

A dynamic equilibrium for the non-intermediated OTC market is a bounded sequence {Zt, φst}∞t=0

that satisfies the following system of difference equations

Zt =
β̄

µ

[
1 + αη

∫ εH[
Zt+1
As
−φst+1

]
∫ εH

εj

εi − εj
εj + φst+1

dG (εi) dG (εj)

]
Zt+1

φst = β̄π

φst+1 + ε̄+ α (1− η)

∫ [
Zt+1
As
−φst+1

]
εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj)

 .
Equivalently, letting εct+1 ≡ Zt+1

As −φst+1, an equilibrium for the non-intermediated OTC market

is a bounded sequence {Zt, εct}∞t=0 that satisfies the following system of difference equations

zt =
β̄

µ

[
1 + αη

∫ εH

εct+1

∫ εH

εj

εi − εj
εj − εct+1 + zt+1

dG (εi) dG (εj)

]
zt+1

zt − εct = β̄π

[
zt+1 − εct+1 + ε̄+ α (1− η)

∫ εct+1

εL

∫ εj

εL

(εj − εi) dG (εi) dG (εj)

]
.

where zt ≡ Zt/As.

79



B.1.3 Pure-dealer OTC market with dealer entry

A dynamic equilibrium for the pure-dealer OTC market with dealer entry is a bounded sequence

{vt, Zt, AsDt, AsIt, φst , ε∗t }∞t=0 such that {φst , ε∗t }∞t=0 satisfies the following system of difference equa-

tions

Zt =
β̄

µ

[
1 + δ (vt+1) θ

∫ εH

ε∗t+1

ε− ε∗t+1

ε∗t+1 + φst+1

dG (ε)

]
Zt+1

φst = β̄π

[
φst+1 + max

{
ε∗t+1, ε̄+ δ (vt+1) θ

∫ ε∗t+1

εL

G (ε) dε

}]

and {vt, Zt, AsDt, AsIt}∞t=0 is given by

Zt =
AsDt + δ (vt)G(ε∗t )A

s
It

δ (vt) θ [1−G(ε∗t )]
1

ε∗t+φst
+ δ (vt) (1− θ)

∫ εH
ε∗t

1
ε+φst

dG (ε)

AsIt =

{
(1− π)As if ε̄+ δ (vt) θ

∫ ε∗t
εL
G (ε) dε ≤ ε∗t

As if ε∗t < ε̄+ δ (vt) θ
∫ ε∗t
εL
G (ε) dε

AsDt+1 = As −AsIt+1

vt+1

{
= 0 if Ψt+1 (0)− k ≤ 0
∈ {v ∈ R+ : Ψt+1 (v) = k} if 0 < Ψt+1 (0)− k

where κ (v) ≡ δ (v) /v and

Ψt+1 (v) ≡ β̄κ (v) (1− θ)
[
AsIt+1

∫ ε∗t+1

εL

(ε∗t+1 − ε)dG (ε) + Zt+1

∫ εH

ε∗t+1

ε−ε∗t+1

ε+φst+1
dG (ε)

]
.

B.2 Illiquid bonds

Lemma 9 In a stationary monetary equilibrium, the nominal yield to maturity of a nominal

risk-free illiquid bond of any maturity is ι as given in (23).

Proof of Lemma 9. Let φBt,k denote the real price (in terms of the second-subperiod con-

sumption good of time t) of an N -period risk-free pure-discount nominal bond that matures

in period t + k, for k = 0, 1, 2, ..., N (so k is the number of periods until the bond matures).

Assume that the bond is illiquid in the sense that it cannot be traded in the OTC market. For

any t, the Euler equation for this asset is φBt,k = βEtφBt+1,k−1, for k = 1, ..., N , with φBt,0 = φmt .

Hence, using the Law of Iterated Expectations,

φBt,k = βkEtφmt+k (144)
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for k = 1, ..., N . The dollar price of the bond in the second subperiod of period t is qBt,k = φBt,k/φ
m
t

for k = 0, ..., N . Thus, (144) implies

qBt,k = βkEt
φmt+k
φmt

=

(
β̄

µ

)k
,

where the last equality follows from the fact that φmt+1 = (γt+1/µ)φmt in a stationary monetary

equilibrium. The nominal yield (to maturity) at period t for a nominal bond with k periods

until maturity, is defined as the ιt,k that solves (1 + ιt,k)
k = 1/qBt,k, so

ιt,k =
(
qBt,k
)−1/k − 1 =

µ− β̄
β̄
≡ ι

as defined in (23).
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